Exemplo n.º 1
0
def loadData(filename="",sz=100,useRand=False):
	if len(filename)==0:
		filename="../../GWAS/cleaned";
	[y,sFil]=getData(filename);
	if useRand:
		rand.shuffle(y);

	I=[];
	I1=[i for i in range(0,len(y)) if y[i]==1];
	I2=[i for i in range(0,len(y)) if y[i]!=1];
	
	I.extend(I1[:sz]);
	I.extend(I2[:sz]);

	NI=[];
	NI.extend(I1[sz:])
	NI.extend(I2[sz:])

	y1=[y[i] for i in I]
	sFil1=sFil[I,:];


	y2=[y[i] for i in NI]
	sFil2=sFil[NI,:];

	return [[y1,sFil1],[y2,sFil2]];
Exemplo n.º 2
0
def NoisySig(mret,eps,filename,savename=""):
        if len(savename)==0:
                savename="Output/res_top_"+str(eps)+"_"+str(mret)+".txt"
        epsilons=[eps*i for i in range(1,11)];
        print "load Data"
        [y,BED]=ld.getData(filename);
        print "calc EIGN!"
        EIGN=EIGN_STRAT(BED,2);
        sc=EIGN.prod(y);
        sc=[abs(s) for s in sc];
        sc=sorted(sc,reverse=True);
        print "get True!";
        truSNPs=pt(y,EIGN,mret,-1,algor="noise");
        our=[0.0 for i in range(1,11)];
        score=[0.0 for i in range(1,11)];
        noise=[0.0 for i in range(1,11)];
        neighbor=[0.0 for i in range(1,11)];
        reps=20;
        for i in range(0,10):
                e=epsilons[i];
                print e;
                for j in range(0,reps):
                        print j;
                        nosySNPs=pt(y,EIGN,mret,e,algor="DPE",reuse=True);
                        our[i]=our[i]+inter(truSNPs,noisySNPs)/float(reps);
                        
                        noisySNPs=pt(y,MU,mret,e,algor="score");
                        score[i]=score[i]+inter(truSNPs,noisySNPs)/float(reps);
                        
                        noisySNPs=pt(y,MU,mret,e,algor="noise");
                        noise[i]=noise[i]+inter(truSNPs,noisySNPs)/float(reps);
                        
                        noisySNPs=pt(y,MU,mret,e,algor="neighbor");
                        neighbor=neighbor[i]+inter(truSNPs,noisySNPs)/float(reps);
Exemplo n.º 3
0
def plotTop(mret,eps,filename,savename=""):
	if len(savename)==0:
		savename="OutputDir/LMM_top_"+str(eps)+"_"+str(mret)+".txt"
	epsilons=[eps*i for i in range(1,11)];
	print "load Data"
	[y,BED]=ld.getData(filename);
	print "calc MU!"
	MU=MU_LMM(BED,[1,-1.0]);
	sc=MU.prod(y);
	sc=[abs(s) for s in sc];
	sc=sorted(sc,reverse=True);
	print "get True!";
	tru=pt(y,MU,mret,-1,algor="noise");
	neighs=[0.0 for i in range(1,11)];
	score=[0.0 for i in range(1,11)];
	noise=[0.0 for i in range(1,11)];
	reps=20;
	for i in range(0,10):
		e=epsilons[i];
		print e;
		for j in range(0,reps):
			print j;
			e1=e*mret/float(mret+1);
			MU=MU_LMM(BED,[10,e/float(mret+1)]);
			gs=pt(y,MU,mret,e1,algor="neighbor",reuse=True);
			neighs[i]=neighs[i]+inter(tru,gs)/float(reps);	
			gs=pt(y,MU,mret,e1,algor="score");
			score[i]=score[i]+inter(tru,gs)/float(reps);	
			gs=pt(y,MU,mret,e1,algor="noise");
			noise[i]=noise[i]+inter(tru,gs)/float(reps);
		
	fil=open(savename,"w");
	fil.write("Testing Top SNPs with DP, "+filename);
	fil.write("\nEpsilon:")
	for i in range(0,10):
		fil.write(" "+str(epsilons[i]))
	fil.write("\nNoise:")
	for i in range(0,10):
		fil.write(" "+str(noise[i]))
	fil.write("\nScore:")
	for i in range(0,10):
		fil.write(" "+str(score[i]))
	fil.write("\nNeighbor:")
	for i in range(0,10):
		fil.write(" "+str(neighs[i]))
	fil.close();
Exemplo n.º 4
0
def plotTop(mret, eps, filename, savename=""):
    if len(savename) == 0:
        savename = "OutputDir/LMM_top_" + str(eps) + "_" + str(mret) + ".txt"
    epsilons = [eps * i for i in range(1, 11)]
    print "load Data"
    [y, BED] = ld.getData(filename)
    print "calc MU!"
    MU = MU_LMM(BED, [1, -1.0])
    sc = MU.prod(y)
    sc = [abs(s) for s in sc]
    sc = sorted(sc, reverse=True)
    print "get True!"
    tru = pt(y, MU, mret, -1, algor="noise")
    neighs = [0.0 for i in range(1, 11)]
    score = [0.0 for i in range(1, 11)]
    noise = [0.0 for i in range(1, 11)]
    reps = 20
    for i in range(0, 10):
        e = epsilons[i]
        print e
        for j in range(0, reps):
            print j
            e1 = e * mret / float(mret + 1)
            MU = MU_LMM(BED, [10, e / float(mret + 1)])
            gs = pt(y, MU, mret, e1, algor="neighbor", reuse=True)
            neighs[i] = neighs[i] + inter(tru, gs) / float(reps)
            gs = pt(y, MU, mret, e1, algor="score")
            score[i] = score[i] + inter(tru, gs) / float(reps)
            gs = pt(y, MU, mret, e1, algor="noise")
            noise[i] = noise[i] + inter(tru, gs) / float(reps)

    fil = open(savename, "w")
    fil.write("Testing Top SNPs with DP, " + filename)
    fil.write("\nEpsilon:")
    for i in range(0, 10):
        fil.write(" " + str(epsilons[i]))
    fil.write("\nNoise:")
    for i in range(0, 10):
        fil.write(" " + str(noise[i]))
    fil.write("\nScore:")
    for i in range(0, 10):
        fil.write(" " + str(score[i]))
    fil.write("\nNeighbor:")
    for i in range(0, 10):
        fil.write(" " + str(neighs[i]))
    fil.close()
Exemplo n.º 5
0
def plotTop(mret,eps,filename,savename=""):
	if len(savename)==0:
		savename="OutputDir/res_top_"+str(eps)+"_"+str(mret)+".txt"
	epsilons=[eps*i for i in range(1,11)];
	print "load Data"
	[y,BED]=ld.getData(filename);
	print "calc MU!"
	MU=MU_STRAT(BED,10);
	sc=MU.prod(y);
	sc=[abs(s) for s in sc];
	sc=sorted(sc,reverse=True);
	print "get True!";
	tru=pt(y,MU,mret,-1,algor="noise");
	neighs=[0.0 for i in range(1,11)];
	score=[0.0 for i in range(1,11)];
	noise=[0.0 for i in range(1,11)];
	reps=20;
	for i in range(0,10):
		e=epsilons[i];
		print e;
		for j in range(0,reps):
			print j;
			gs=pt(y,MU,mret,e,algor="neighbor",reuse=True);
			neighs[i]=neighs[i]+inter(tru,gs)/float(reps);	
			gs=pt(y,MU,mret,e,algor="score");
			score[i]=score[i]+inter(tru,gs)/float(reps);	
			gs=pt(y,MU,mret,e,algor="noise");
			noise[i]=noise[i]+inter(tru,gs)/float(reps);
		
	fil=open(savename,"w");
	fil.write("Testing Top SNPs with DP, "+filename);
	fil.write("\nEpsilon:")
	for i in range(0,10):
		fil.write(" "+str(epsilons[i]))
	fil.write("\nNoise:")
	for i in range(0,10):
		fil.write(" "+str(noise[i]))
	fil.write("\nScore:")
	for i in range(0,10):
		fil.write(" "+str(score[i]))
	fil.write("\nNeighbor:")
	for i in range(0,10):
		fil.write(" "+str(neighs[i]))
	fil.close();
Exemplo n.º 6
0
def plotWald(eps,filename,savename="",k=5):
	if len(savename)==0:
		savename="OutputDir/res_wald_"+str(eps[0])+"_"+str(k)+".txt"
	print "load Data"
	[y,BED]=ld.getData(filename);
	print "calc MU!"
	MU=MU_STRAT(BED,k);
	print "get True!";
	tru=wt(y,MU,-1,snps=[],forFigs=False);
	fil=open(savename,"w");
	n=len(y);
	for i in range(0,10):
		e=eps[i];
		print e;
		res=wt(y,MU,e,snps=[],forFigs=True);
		err=sorted([float(n-k-1)*abs(res[i]-tru[i]) for i in range(0,len(tru))]);
		m=len(err);
		med=err[int(.5*m)]
		up=err[int(.75*m)];
		down=err[int(.25*m)];
		print med;
		fil.write(str(e)+" "+str(down)+" "+str(med)+" "+str(up)+"\n");
	fil.close();
Exemplo n.º 7
0
    print "As it stands: "
    print "BedFile: " + bedFil
    print "epsilon: " + str(epsilon)
    print "Type: " + typ
    if typ != "Count":
        print "Aglorithm: " + algor
    if typ == "Top":
        print "mret: " + str(mret)
    if typ == "Wald":
        print "SNPs: " + str(snps)
    if typ == "Count":
        print "pvals: " + str(pval)
    print "\n\n\n"
    print "Load Data!"
    [y, BED] = getData(bedFil)

    print "Calculating MU matrix"
    if num < 1:
        MU = MU_LMM(BED, (se2, sg2))
    else:
        MU = MU_LMM(BED, [num, epsilon])
    if typ == "Top":
        PrivGWAS.Top(MU, y, epsilon, mret, algor, savename)
    elif typ == "Count":
        PrivGWAS.count(MU, y, epsilon, pval, savename)
    elif typ == "Wald":
        PrivGWAS.wald(MU, y, epsilon, snps, savename)
    elif typ == "Herit":
        print "The estimated heritability:"
        print "Sigma_e^2 is " + str(MU.se2)
Exemplo n.º 8
0
	print "BedFile: "+bedFil;
	print "epsilon: "+str(epsilon);
	print "Type: "+typ;
	if typ!="Count":
		print "Aglorithm: "+algor;
	if typ=="Top":
		print "mret: "+str(mret);
	if typ=="Wald":
		print "SNPs: "+str(snps);
	if typ=="Count":
		print "threshold: "+str(pval);
	if exact:
		print "Use exact method!"
	print "\n\n\n";
	print "Load Data!"
    	[y,BED]=getData(bedFil);

	print "Calculating MU matrix"
	MU=MU_STRAT(BED,k);
	if exact:
		MU.calcMU(k,exact=True);
	n=len(y);
   	if typ=="Top":
        	PrivGWAS.Top(MU,y,epsilon,mret,algor,savename,snpList);
   	elif typ=="Count":
        	PrivGWAS.count(MU,y,epsilon,pval,savename);
	elif typ=="Wald":
        	PrivGWAS.wald(MU,y,epsilon,snps,savename,coeff=float(n-k-1));


Exemplo n.º 9
0
 print "Type: " + typ
 if typ != "Count":
     print "Aglorithm: " + algor
 if typ == "Top":
     print "mret: " + str(mret)
 if typ == "Wald":
     print "SNPs: " + str(snps)
 if typ == "Count":
     print "pvals: " + str(pval)
 print "\n\n\n"
 print "Load Data!"
 y = []
 X = []
 sFil = []
 Q = []
 [y, X, Q, sFil] = getData(bedFil, useCov)
 print "Calculating MU matrix"
 MU = DP.getMU(y, X, Q=Q, se2=se2, sg2=sg2, k=k, meth=meth)
 if typ == "Top":
     picks = DP.PickTopSNP(y,
                           X,
                           mret,
                           epsilon=epsilon,
                           k=k,
                           se2=se2,
                           sg2=sg2,
                           MU=MU,
                           meth=meth,
                           algor=algor)
     if len(picks) == 0:
         print "Bad argument!"
Exemplo n.º 10
0
	print "Method: "+meth;
	print "BedFile: "+bedFil;
	print "epsilon: "+str(epsilon);
	print "Type: "+typ;
	if typ!="Count":
		print "Aglorithm: "+algor;
	if typ=="Top":
		print "mret: "+str(mret);
	if typ=="Wald":
		print "SNPs: "+str(snps);
	if typ=="Count":
		print "pvals: "+str(pval);
	print "\n\n\n";
	print "Load Data!"
	y=[];X=[];sFil=[];Q=[];
	[y,X,Q,sFil]=getData(bedFil,useCov);	
	print "Calculating MU matrix"
	MU=DP.getMU(y,X,Q=Q,se2=se2,sg2=sg2,k=k,meth=meth);	
	if typ=="Top":
		picks=DP.PickTopSNP(y,X,mret,epsilon=epsilon,k=k,se2=se2,sg2=sg2,MU=MU,meth=meth,algor=algor)
		if len(picks)==0:
			print "Bad argument!"
			return;
		print "The mret top scoring SNPs:"
		for i in picks:
			print sFil.sid[i];
			print sFil.pos[i]
	elif typ=="Wald":
		picks=sFil.sid_to_index(snps);#[snps.index(i) for i in snps];
		Scores=DP.estWald(y,X,epsilon,k=k,snps=picks,MU=MU,meth=meth,algor=algor);
		print "The estimated Wald scores are:";