Exemplo n.º 1
0
 def test_makePredictions(self):
     cn.trainNetwork(5, self.testfile, self.trainfile)
     cn.makePredictions(self.testfile)
     rows, cols = load_extension.getDims(self.testfile)
     predimage = 'prediction.tif'
     testrows, testcols = load_extension.getDims(predimage)
     self.assertEqual((rows, cols), (testrows, testcols))
     self.assertIs(type(testrows), int)
     self.assertIs(type(testcols), int)
 def test_makePredictions(self):
     cn.trainNetwork(5, self.testfile, self.trainfile)
     cn.makePredictions(self.testfile)
     rows, cols = load_extension.getDims(self.testfile)
     predimage = 'prediction.tif'
     testrows, testcols = load_extension.getDims(predimage)
     self.assertEqual((rows, cols), (testrows, testcols))
     self.assertIs(type(testrows), int)
     self.assertIs(type(testcols), int)
def get_labeled_data(filename, training_file, block_size=32):
    """Read input-array (image) and label-images and return it as list of tuples. """

    rows,cols = load_extension.getDims(filename)
    print rows,cols

    image = np.ones((rows, cols), 'uint8')
    label_image = np.ones((rows, cols), 'uint8')
    # x is a dummy to use as a form of error checking will return false on error
    x = load_extension.getImage(image, filename)
    x = load_extension.getTraining(label_image, filename, training_file)
    X = []
    y = []
    for i in xrange(0,rows,block_size):
        for j in xrange(0,cols,block_size):
            try:
                X.append(image[i:i + block_size, j:j + block_size].reshape(1, block_size * block_size))
                y.append(int(load_extension.getLabel(label_image[i:i + block_size, j:j + block_size], "1", "0", 0.75)))
            except ValueError:
                continue

    X = np.array(X).astype(np.float32)
    label_blocks = np.array(y).astype(np.int32)
    test_blocks = X.reshape(-1, 1, block_size, block_size)

    return test_blocks, label_blocks
Exemplo n.º 4
0
    def setUpClass(self):
        # pass
        mt.make()
        self.testfile = 'test.tif'
        self.trainfile = 'train.tif'
        self.downloadfile = 'TRA_000823_1720_COLOR.JP2'

        temp = np.ones((256, 256), 'uint8') * 125
        self.rows, self.cols = load_extension.getDims(self.testfile)

        test_image = Image.fromarray(temp)
        test_image.save(self.testfile)
        self.image_8bit = np.array(Image.open(self.testfile))

        train_image = Image.fromarray(temp)
        train_image.save(self.trainfile)
        self.image_8bit = np.array(Image.open(self.trainfile))
        self.dims = self.image_8bit.shape
    def setUpClass(self):
        # pass
        mt.make()
        self.testfile = 'test.tif'
        self.trainfile = 'train.tif'
        self.downloadfile = 'TRA_000823_1720_COLOR.JP2'

        temp = np.ones((256,256),'uint8')*125
        self.rows, self.cols = load_extension.getDims(self.testfile)

        test_image = Image.fromarray(temp)
        test_image.save(self.testfile)
        self.image_8bit = np.array(Image.open(self.testfile))

        train_image = Image.fromarray(temp)
        train_image.save(self.trainfile)
        self.image_8bit = np.array(Image.open(self.trainfile))
        self.dims = self.image_8bit.shape
Exemplo n.º 6
0
Arquivo: cnn.py Projeto: sebaqu11/test
def get_labeled_data(filename, training_file):
    """Read input-array (image) and label-images and return it as list of tuples. """

    rows, cols = load_extension.getDims(filename)
    print rows, cols

    image = np.ones((rows,cols),'uint8')
    label_image = np.ones((rows,cols),'uint8')
    # x is a dummy to use as a form of error checking will return false on error
    x = load_extension.getImage(image, filename)
    x = load_extension.getTraining(label_image, filename, training_file)

    #Seperate Image and Label into blocks
    #test_blocks,blocks = create_image_blocks(768, 393,11543,rows,cols,image)
    #label_blocks, blocks = create_image_blocks(768, 393,11543,rows,cols,label_image)
    test_blocks,blocks = load4d(4096, 8, 8,rows,cols,image)
    label_blocks, blocks = load4d(4096, 8,8,rows,cols,label_image)
    #Used to Write image blocks to folder
    #or i in range(blocks):
         #im = Image.fromarray(test_blocks[i][i])
         #im.save(str(i) +"label.tif")
    return test_blocks, label_blocks
Exemplo n.º 7
0
def get_labeled_data(filename, training_file):
    """Read input-array (image) and label-images and return it as list of tuples. """

    rows, cols = load_extension.getDims(filename)
    print rows, cols

    image = np.ones((rows, cols), 'uint8')
    label_image = np.ones((rows, cols), 'uint8')
    # x is a dummy to use as a form of error checking will return false on error
    x = load_extension.getImage(image, filename)
    x = load_extension.getTraining(label_image, filename, training_file)

    #Seperate Image and Label into blocks
    #test_blocks,blocks = create_image_blocks(768, 393,11543,rows,cols,image)
    #label_blocks, blocks = create_image_blocks(768, 393,11543,rows,cols,label_image)
    test_blocks, blocks = load4d(4096, 8, 8, rows, cols, image)
    label_blocks, blocks = load4d(4096, 8, 8, rows, cols, label_image)
    #Used to Write image blocks to folder
    #or i in range(blocks):
    #im = Image.fromarray(test_blocks[i][i])
    #im.save(str(i) +"label.tif")
    return test_blocks, label_blocks
def getPredictionData(inputFile, block_size=32):
     #Load image using extension
    rows, cols = load_extension.getDims(inputFile)
    print rows, cols
    image = np.ones((rows, cols), 'uint8')
    # x is a dummy to use as a form of error checking will return false on error
    x = load_extension.getImage(image, inputFile)
    X = []
    blocklist = []

    for i in xrange(0,rows,block_size):
        for j in xrange(0,cols,block_size):
            try:
                X.append(image[i:i + block_size, j:j + block_size].reshape(1, block_size * block_size))
                blocklist.append(image[i:i + block_size, j:j + block_size])
            except ValueError:
                continue

    X = np.array(X).astype(np.float32)
    X = X.reshape(-1, 1, block_size, block_size)
    load_extension.getImage(image, inputFile)
    return X, image, blocklist
import load_extension
import numpy as np
from PIL import Image
import Tkinter

root = Tkinter.Tk()



image_file = "PSP_009650_1755_RED"
train_file = image_file+"_dunes.tif"
image_file += ".tif"

rows, cols = load_extension.getDims(image_file)
ratio = max((cols)/root.winfo_screenwidth(),(rows)/root.winfo_screenheight())
size = (cols /ratio , rows / ratio)

sub_rows = rows/8
sub_cols = cols/4
print sub_rows, sub_cols


image = np.zeros((rows,cols),"uint8")
load_extension.getImage(image,image_file)

# im = Image.fromarray(image[:sub_rows, sub_cols:])
#im.thumbnail(size,Image.ANTIALIAS)
#im.show()
# ones = np.ones((sub_rows,sub_cols),'uint8')
# image = np.multiply(ones, image[:sub_rows, :sub_cols])
 def test_getImage(self):
     x = np.ones(le.getDims(self.filename), 'uint8')
     le.getImage(x, self.filename)
     self.image_8bit = np.array(Image.open(self.filename))
     assert ((self.image_8bit == x).all(), True)
 def test_getDims(self):
     # pil_dims = Image.open()
     assert(self.dims==le.getDims(self.filename), True)
Exemplo n.º 12
0
 def test_getPredictionData(self):
     x = cn.getPredictionData(self.testfile, block_size=32)
     rows, cols = load_extension.getDims(self.testfile)
     testrows, testcols = x[1].shape
     self.assertEqual(np.ndim(x[0]), 4)
     self.assertEqual((testrows, testcols), (rows, cols))
import load_extension
import numpy as np
import matplotlib.pyplot as plt
import Tkinter
import datetime
from PIL import Image

root = Tkinter.Tk()

start = datetime.datetime.now()

#assumes you have Ryans images in the same folder as this script
filename ="PSP_009650_1755_RED.tif"

#filename = "example.tif"
#filename = "training_image.tif"
training_file = "PSP_009650_1755_RED_dunes.tif"
rows,cols =  load_extension.getDims(filename)

train_image = np.zeros((rows,cols),'uint8')
image = np.zeros((rows,cols),'uint8')
load_extension.getImage(image,filename)
newfile = filename.split(".")[0] +"_flipped."+filename.split(".")[1]
start = datetime.datetime.now()
image = image[::-1]
ones = np.ones((rows,cols),'uint8')
image = np.multiply(ones, image)
load_extension.writeImage(image,newfile)
print datetime.datetime.now() -start
Exemplo n.º 14
0
import load_extension
import numpy as np
import matplotlib.pyplot as plt
import Tkinter
import datetime
from PIL import Image

root = Tkinter.Tk()

start = datetime.datetime.now()

#assumes you have Ryans images in the same folder as this script
filename = "PSP_009650_1755_RED.tif"

#filename = "example.tif"
#filename = "training_image.tif"
training_file = "PSP_009650_1755_RED_dunes.tif"
rows, cols = load_extension.getDims(filename)

train_image = np.zeros((rows, cols), 'uint8')
image = np.zeros((rows, cols), 'uint8')
load_extension.getImage(image, filename)
newfile = filename.split(".")[0] + "_flipped." + filename.split(".")[1]
start = datetime.datetime.now()
image = image[::-1]
ones = np.ones((rows, cols), 'uint8')
image = np.multiply(ones, image)
load_extension.writeImage(image, newfile)
print datetime.datetime.now() - start
Exemplo n.º 15
0
import load_extension
import numpy as np
from PIL import Image
import Tkinter

root = Tkinter.Tk()

image_file = "PSP_009650_1755_RED"
train_file = image_file + "_dunes.tif"
image_file += ".tif"

rows, cols = load_extension.getDims(image_file)
ratio = max((cols) / root.winfo_screenwidth(),
            (rows) / root.winfo_screenheight())
size = (cols / ratio, rows / ratio)

sub_rows = rows / 8
sub_cols = cols / 4
print sub_rows, sub_cols

image = np.zeros((rows, cols), "uint8")
load_extension.getImage(image, image_file)

# im = Image.fromarray(image[:sub_rows, sub_cols:])
#im.thumbnail(size,Image.ANTIALIAS)
#im.show()
# ones = np.ones((sub_rows,sub_cols),'uint8')
# image = np.multiply(ones, image[:sub_rows, :sub_cols])

load_extension.writeImage(image[:sub_rows][sub_cols:], "test.tif")
load_extension.getImage(image, train_file)
 def test_getPredictionData(self):
     x = cn.getPredictionData(self.testfile, block_size=32)
     rows, cols = load_extension.getDims(self.testfile)
     testrows, testcols = x[1].shape
     self.assertEqual(np.ndim(x[0]), 4)
     self.assertEqual((testrows, testcols), (rows, cols))