def fit(self, epochs, batch_size=32, verbose=1, workers=10): self.createModel() with open('layoutannotations.json') as f: annotations = json.load(f) _, split = load() with open('lstminput.json') as f: lstminput = json.load(f) training_generator = DataGeneratorEntity(annotations=annotations, video_files=split['train'], F=self.F, batch_size=batch_size, LSTM=self.LSTM, lstminput=lstminput) validation_generator = DataGeneratorEntity(annotations=annotations, video_files=split['val'], F=self.F, batch_size=batch_size, LSTM=self.LSTM, lstminput=lstminput) self.model.fit_generator(generator=training_generator, validation_data=validation_generator, epochs=epochs, use_multiprocessing=True, workers=workers, verbose=verbose) return
def fit(self, epochs, batch_size=32): self.createModel() with open('layoutannotations.json') as f: annotations = json.load(f) _, split = load() with open('lstminput.json') as f: lstminput = json.load(f) tf.flags.DEFINE_integer("batch_size", 32, "Batch size during training") tf.flags.DEFINE_integer("eval_batch_size", 8, "Batch size during evaluation") training_generator = DataGeneratorLayout(annotations=annotations, video_files=split['train'], F=self.F, batch_size=8, LSTM=self.LSTM, lstminput=lstminput, graph=self.graph) validation_generator = DataGeneratorLayout(annotations=annotations, video_files=split['val'], F=self.F, batch_size=8, LSTM=self.LSTM, lstminput=lstminput, graph=self.graph) self.model.fit_generator(generator=training_generator, validation_data=validation_generator, epochs=50, use_multiprocessing=True, workers=10) '''
def main(): filename = 'data/inflammation-01.csv' data = loaddata.load(filename) print(filename) print(data.mean(axis=1))
def f**k(): annotations, split = load() layoutanno = dict() i = 1 for annotation in annotations: layoutanno.update({annotation['globalID']:annotation}) print("[{}] ".format(i)+annotation['globalID']) i = i + 1 with open('layoutannotations.json','w') as fp: json.dump(layoutanno,fp) return
def fit(self, epochs, batch_size=32, verbose=1, workers=30): self.createModel() #self.model.load_weights('LayoutCheckpoints/weights-improvement-15-15603.58.hdf5') #opt = Adam(lr=0.001, decay=0.5, amsgrad=False) #weight decay 0.0001 #self.model.compile(optimizer=opt, loss={'dense_4':self.loss2, 'activation_1':self.loss1}, loss_weights=[1, 1], metrics=[]) with open('layoutannotations.json') as f: annotations = json.load(f) _, split = load() with open('lstminput.json') as f: lstminput = json.load(f) tf.flags.DEFINE_integer("batch_size", 32, "Batch size during training") tf.flags.DEFINE_integer("eval_batch_size", 8, "Batch size during evaluation") filepath="LayoutCheckpoints/weights-improvement-{epoch:02d}-{val_loss:.2f}.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='val_loss', verbose=1, save_best_only=True, mode='min') training_generator = DataGeneratorLayout(annotations=annotations, video_files=split['train'], F=self.F, batch_size=batch_size, LSTM=self.LSTM, lstminput=lstminput, graph=self.graph) validation_generator = DataGeneratorLayout(annotations=annotations, video_files=split['val'], F=self.F, batch_size=batch_size, LSTM=self.LSTM, lstminput=lstminput, graph=self.graph) self.history = self.model.fit_generator(generator=training_generator, validation_data=validation_generator, epochs=epochs, use_multiprocessing=True, workers=workers, verbose=verbose, callbacks=[checkpoint]) self.model.save('LayoutComposerModel.h5') '''
# -*- coding: utf-8 -*- import numpy as np import loaddata as ld import gradientdescent as GD import normalization as norm X, Y, n = ld.load('data.txt') X = norm.normalize(X, n) X = X.reshape((n * 2)) tmp = [] for i in xrange(0, 2 * n, 2):#Оторвать мне руки tmp.append(1) tmp.append(X[i]) tmp.append(X[i + 1]) X = np.array(tmp).reshape(n, 3) print X alpha = 0.01; iterations = 400; theta = np.zeros((3, 1))#init fitting params
import numpy as np import loaddata as ld import cost X, Y, m = ld.load('data.txt') theta = np.zeros((2 + 1, 1)) print cost.costfunc(theta, X, Y, m)
import numpy as np import loaddata as ld import computeCost as cC import gradientdescent as GD import math X, Y, m = ld.load('ex1data.txt')#load X's and Y's m - len of dataset theta = np.zeros((2, 1))#init fitting params #should be 32.07 print 'Cost:', cC.compCost(X, Y, theta) #Some gradient descent settings iterations = 1500; alpha = 0.01; theta,J_history = GD.GDescent(X, Y, theta, alpha, iterations) print 'theta: ', theta pvalue = 3.5 #predict = 1/(1+ math.exp( np.dot( np.array([1, pvalue]).reshape(1, 2), theta))) predict = np.dot( np.array([1, pvalue]).reshape(1, 2), theta )
import numpy as np import loaddata as ld import computeCost as cC import gradientdescent as GD import math X, Y, m = ld.load('ex1data.txt') #load X's and Y's m - len of dataset theta = np.zeros((2, 1)) #init fitting params #should be 32.07 print 'Cost:', cC.compCost(X, Y, theta) #Some gradient descent settings iterations = 1500 alpha = 0.01 theta, J_history = GD.GDescent(X, Y, theta, alpha, iterations) print 'theta: ', theta pvalue = 3.5 #predict = 1/(1+ math.exp( np.dot( np.array([1, pvalue]).reshape(1, 2), theta))) predict = np.dot(np.array([1, pvalue]).reshape(1, 2), theta) print 'predict for ', pvalue, predict
from scipy.io import savemat import loaddata import scipy import numpy as np import torch import os torch.manual_seed(0) dataset_name = 'ppi' for noise_level in [0, 1.0, 2.0, 3.0]: a1, f1, a2, f2, ground_truth = loaddata.load(dataset_name, noise_level=noise_level) print(f1, f2) feature_size = f1.size(1) ns = [f1.size(0), f2.size(0)] # edge_list_1 = get_edge_list(a1, f1.size(0)) # edge_list_2 = get_edge_list(a2, f2.size(0)) # features = [f1, f2] # edges = [a1, a2] f = open('ppi_combined_edges.txt', 'w') print(ns) print(a1.size()) print(ground_truth) n = ns[0] print(n) t1 = (a1[0] < a1[1]).nonzero() t2 = (a2[0] < a2[1]).nonzero() a1 = a1[:, t1] a2 = a2[:, t2] g = ground_truth
import numpy as np import json from lstm import lstm from loaddata import load from keras.models import * import cv2 annotations, _ = load() F = 75 '''n_words=6414 n_tags=42 LSTM = lstm(hidden=64) LSTM.load_weights('entity_lstm.h5')''' from preprocess import preProcessData from keras.models import Model, Input from keras.layers import * from keras_contrib.layers import CRF from keras.utils import plot_model from keras.models import load_model import json import numpy as np from keras.callbacks import ModelCheckpoint #from livelossplot import PlotLossesKeras BATCH_SIZE = 512 # Number of examples used in each iteration EPOCHS = 20 # Number of passes through entire dataset MAX_LEN = 75 # Max length of review (in words) EMBEDDING = 100 # Dimension of word embedding vector
# -*- coding: utf-8 -*- import numpy as np import loaddata as ld import gradientdescent as GD import normalization as norm X, Y, n = ld.load('data.txt') X = norm.normalize(X, n) X = X.reshape((n * 2)) tmp = [] for i in xrange(0, 2 * n, 2): #Оторвать мне руки tmp.append(1) tmp.append(X[i]) tmp.append(X[i + 1]) X = np.array(tmp).reshape(n, 3) print X alpha = 0.01 iterations = 400 theta = np.zeros((3, 1)) #init fitting params
def main(): filename=sys.argv[1] # a new change!! data = loaddata.load(filename) print filename print data.mean(axis=1)
args.__dict__[t] = arg_dict[t] except: print('Error in loading config and use default setting instead') print(args) if args.setup == 1: args.net = GCNNet elif args.setup == 2: args.net = GATNet elif args.setup == 3 or args.setup == 4: args.net = LGCN dataset_name = args.dataset noise_level = args.noise if dataset_name in ['douban']: a1, f1, a2, f2, ground_truth, prior = load(dataset_name, noise_level=noise_level) feature_size = f1.shape[1] ns = [a1.shape[0], a2.shape[0]] edge_1 = torch.LongTensor(np.array(a1.nonzero())) edge_2 = torch.LongTensor(np.array(a2.nonzero())) ground_truth = torch.tensor(np.array( ground_truth, dtype=int)) - 1 # Original index start from 1 features = [ torch.FloatTensor(f1.todense()), torch.FloatTensor(f2.todense()) ] edges = [edge_1, edge_2] prior = torch.FloatTensor(prior) prior_rate = args.prior_rate elif dataset_name in ['ppi', 'arena']: a1, f1, a2, f2, ground_truth = load(dataset_name, noise_level=noise_level)
if args.pospath: modelname += '_pos' pre_textname += '_pos' pre_embedname += '_pos' if args.embed_size != 100: modelname += f'_v{args.embed_size}' pre_textname += f'_v{args.embed_size}' pre_embedname += f'_v{args.embed_size}' ################################ # train or evaluation ################################ if args.train: print('[{0:.15s}] Train'.format('STATE')) # 1. load data data, _, infos = load(reviewpath, productpath, infopath) # 2. preprocessing train set text = GP.fit(data.content.tolist(), wordfix_path=args.wordpath, posfix_path=args.pospath) # save preprocessed text with open(f'{args.savedir}/{pre_textname}.pickle', 'wb') as f: pickle.dump(text, f) # 2.1 product description description = infos.description.str.replace('\n', ' ').tolist() description = list(map(GP.stopword, description)) description = list(map(GP.kkma.nouns, description))
def main(): filename = sys.argv[1] data = loaddata.load(filename) print(filename) print(data.mean(axis=1))