Exemplo n.º 1
0
def evaluate_model(learning_rate=0.001,
                   n_epochs=100,
                   nkerns=[16, 40, 50, 60],
                   batch_size=20):
    """ 
    Network for classification of MNIST database

    :type learning_rate: float
    :param learning_rate: this is the initial learning rate used
                            (factor for the stochastic gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer

    :type batch_size: int
    :param batch_size: the batch size for training
    """

    print("Evaluating model")

    rng = numpy.random.RandomState(23455)

    # loading the data
    datasets = load_test_data()

    valid_set_x, valid_set_y = datasets[0]
    test_set_x, test_set_y = datasets[1]

    # compute number of minibatches for training, validation and testing
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    # start-snippet-1
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
    # [int] labels

    loaded_params = numpy.load('../saved_models/model.npy')
    layer4_W, layer4_b, layer3_W, layer3_b, layer2_W, layer2_b, layer1_W, layer1_b, layer0_W, layer0_b = loaded_params

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('Building the model...')

    chosen_height = 64
    chosen_width = 64

    # Reshape matrix of rasterized images of shape (batch_size, 32 * 32)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    # (32, 32) is the size of MNIST images.
    layer0_input = x.reshape((batch_size, 3, chosen_height, chosen_width))

    # Construct the first convolutional pooling layer:
    # filtering does not reduce the layer size because we use padding
    # maxpooling reduces the size to (32/2, 32/2) = (16, 16)
    # 4D output tensor is thus of shape (batch_size, nkerns[0], 16, 16)
    layer0 = MyConvPoolLayer(rng,
                             input=layer0_input,
                             image_shape=(batch_size, 3, chosen_height,
                                          chosen_width),
                             p1=2,
                             p2=2,
                             filter_shape=(nkerns[0], 3, 5, 5),
                             poolsize=(2, 2))

    # Construct the second convolutional pooling layer:
    # filtering does not reduce the layer size because we use padding
    # maxpooling reduces the size to (16/2, 16/2) = (8, 8)
    # 4D output tensor is thus of shape (batch_size, nkerns[1], 5, 5)
    layer1 = MyConvPoolLayer(rng,
                             input=layer0.output,
                             image_shape=(batch_size, nkerns[0],
                                          chosen_height / 2, chosen_width / 2),
                             p1=2,
                             p2=2,
                             filter_shape=(nkerns[1], nkerns[0], 5, 5),
                             poolsize=(2, 2))

    # Construct the third convolutional pooling layer
    # filtering does not reduce the layer size because we use padding
    # maxpooling reduces the size to (8/2, 8/2) = (4, 4)
    # 4D output tensor is thus of shape (batch_size, nkerns[2], 4, 4)
    layer2 = MyConvPoolLayer(rng,
                             input=layer1.output,
                             image_shape=(batch_size, nkerns[1],
                                          chosen_height / 4, chosen_width / 4),
                             p1=2,
                             p2=2,
                             filter_shape=(nkerns[2], nkerns[1], 5, 5),
                             poolsize=(2, 2))

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (batch_size, nkerns[2] * 4 * 4),
    # or (500, 20 * 4 * 4) = (500, 320) with the default values.
    layer3_input = layer2.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer3 = HiddenLayer(rng,
                         input=layer3_input,
                         n_in=nkerns[2] * (chosen_height / 8) *
                         (chosen_width / 8),
                         n_out=800,
                         activation=T.tanh)

    # classify the values of the fully-connected sigmoidal layer
    layer4 = LogisticRegression(input=layer3.output, n_in=800, n_out=6)

    cost = layer4.negative_log_likelihood(y)

    predicted_output = layer4.y_pred

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        })

    validate_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        })

    # create a list of all model parameters to be fit by gradient descent
    params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params

    #Loading the model
    # f = file('../saved_models/model317.save.npy', 'r')
    # params = cPickle.load(f)
    # print(params)
    # f.close()
    # # layer4.params, layer3.params, layer2.params, layer1.params, layer0.params = params
    # # layer4.W, layer4.b = layer4.params
    # # layer3.W, layer3.b = layer3.params
    # # layer2.W, layer2.b = layer2.params
    # # layer1.W, layer1.b = layer1.params
    # # layer0.W, layer0.b = layer0.params
    # layer4.W, layer4.b, layer3.W, layer3.b, layer2.W, layer2.b, layer1.W, layer1.b, layer0.W, layer0.b = params
    # layer4.params = [layer4.W, layer4.b]
    # layer3.params = [layer3.W, layer3.b]
    # layer2.params = [layer2.W, layer2.b]
    # layer1.params = [layer1.W, layer1.b]
    # layer0.params = [layer0.W, layer0.b]

    # x = cPickle.load(f)
    # layer4.params = [layer4.W, layer4.b]
    # layer3.params = [layer3.W, layer3.b]
    # layer2.params = [layer2.W, layer2.b]
    # layer1.params = [layer1.W, layer1.b]
    # layer0.params = [layer0.W, layer0.b]

    # test it on the test set
    test_losses = [test_model(i) for i in range(n_test_batches)]
    validation_losses = [validate_model(i) for i in range(n_valid_batches)]

    test_score = numpy.mean(test_losses)
    validation_score = numpy.mean(validation_losses)
    print((' Validation error is %f %%') % (validation_score * 100.))
    print((' Test error is %f %%') % (test_score * 100.))
Exemplo n.º 2
0
def evaluate_model(learning_rate=0.001,
                   n_epochs=100,
                   nkerns=[16, 40, 50, 60],
                   batch_size=20):
    """ 
    Network for classification of MNIST database

    :type learning_rate: float
    :param learning_rate: this is the initial learning rate used
                            (factor for the stochastic gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer

    :type batch_size: int
    :param batch_size: the batch size for training
    """

    print("Evaluating model")

    rng = numpy.random.RandomState(23455)

    # loading the data1
    datasets = load_test_data(1)

    valid_set_x, valid_set_y = datasets[0]
    test_set_x, test_set_y = datasets[1]

    # compute number of minibatches for training, validation and testing
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_valid_batches //= batch_size
    n_test_batches //= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch

    # start-snippet-1
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
    # [int] labels

    loaded_params = numpy.load('../saved_models/model1.npy')
    layer4_W, layer4_b, layer3_W, layer3_b, layer2_W, layer2_b, layer1_W, layer1_b, layer0_W, layer0_b = loaded_params

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print('Building the model...')

    # Reshape matrix of rasterized images of shape (batch_size, 32 * 32)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    # (32, 32) is the size of MNIST images.
    layer0_input = x.reshape((batch_size, 1, 64, 88))

    # Construct the first convolutional pooling layer:
    # filtering does not reduce the layer size because we use padding
    # maxpooling reduces the size to (32/2, 32/2) = (16, 16)
    # 4D output tensor is thus of shape (batch_size, nkerns[0], 16, 16)
    layer0 = MyConvPoolLayer(rng,
                             input=layer0_input,
                             image_shape=(batch_size, 1, 64, 88),
                             p1=2,
                             p2=2,
                             filter_shape=(nkerns[0], 1, 5, 5),
                             poolsize=(2, 2),
                             W=layer0_W,
                             b=layer0_b)

    # Construct the second convolutional pooling layer:
    # filtering does not reduce the layer size because we use padding
    # maxpooling reduces the size to (16/2, 16/2) = (8, 8)
    # 4D output tensor is thus of shape (batch_size, nkerns[1], 5, 5)
    layer1 = MyConvPoolLayer(rng,
                             input=layer0.output,
                             image_shape=(batch_size, nkerns[0], 32, 44),
                             p1=2,
                             p2=2,
                             filter_shape=(nkerns[1], nkerns[0], 5, 5),
                             poolsize=(2, 2),
                             W=layer1_W,
                             b=layer1_b)

    # Construct the third convolutional pooling layer
    # filtering does not reduce the layer size because we use padding
    # maxpooling reduces the size to (8/2, 8/2) = (4, 4)
    # 4D output tensor is thus of shape (batch_size, nkerns[2], 4, 4)
    layer2 = MyConvPoolLayer(rng,
                             input=layer1.output,
                             image_shape=(batch_size, nkerns[1], 16, 22),
                             p1=2,
                             p2=2,
                             filter_shape=(nkerns[2], nkerns[1], 5, 5),
                             poolsize=(2, 2),
                             W=layer2_W,
                             b=layer2_b)

    # the HiddenLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size, num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (batch_size, nkerns[2] * 4 * 4),
    # or (500, 20 * 4 * 4) = (500, 320) with the default values.
    layer3_input = layer2.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer3 = HiddenLayer(rng,
                         input=layer3_input,
                         n_in=nkerns[2] * 8 * 11,
                         n_out=800,
                         activation=T.tanh,
                         W=layer3_W,
                         b=layer3_b)

    # classify the values of the fully-connected sigmoidal layer
    layer4 = LogisticRegression(input=layer3.output,
                                n_in=800,
                                n_out=6,
                                W=layer4_W,
                                b=layer4_b)

    cost = layer4.negative_log_likelihood(y)

    predicted_output = layer4.y_pred

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        })

    val_model_preds = theano.function(
        [index],
        layer4.prediction(),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
        })

    validate_model = theano.function(
        [index],
        layer4.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        })

    # create a list of all model parameters to be fit by gradient descent
    params = layer4.params + layer3.params + layer2.params + layer1.params + layer0.params

    val_preds = [val_model_preds(i) for i in range(n_valid_batches)]

    #print(val_preds)
    #preds = numpy(val_preds)

    preds = []
    for pred in val_preds:
        for p in pred:
            preds.append(p)

    #preds = val_preds.reshape(valid_set_x.get_value(borrow=True).shape[0])

    actual_labels = load_test_data(1, 2)
    n = len(actual_labels)

    confusion_matrix = numpy.zeros((6, 6))

    for i in range(n):
        confusion_matrix[int(actual_labels[i])][preds[i]] += 1

    print(confusion_matrix)

    correct = 0.0
    for i in range(n):
        if (preds[i] == int(actual_labels[i])):
            correct += 1.0

    accuracy = correct / n
    print("Number of correctly classified : ", correct)
    print("Test accuracy is", accuracy * 100)
Exemplo n.º 3
0
from __future__ import print_function
import timeit
import gzip
import copy
import numpy
import math
import theano
import theano.tensor as T
from logistic_regression import LogisticRegression
from hidden_layer import HiddenLayer
from loading_data import load_data, load_test_data
from conv_layers import LeNetConvPoolLayer, MyConvPoolLayer, MyConvLayer
import cPickle
import os

actual_labels = load_test_data(1, 1)
n = len(actual_labels)

preds1 = list(numpy.load("../predicted_labels1.npy").reshape(n))
preds2 = list(numpy.load("../predicted_labels2.npy").reshape(n))
preds3 = list(numpy.load("../predicted_labels3.npy").reshape(n))

preds = []

for i in range(len(preds1)):

    #    if (preds1[i] == preds2[i]):
    #        preds.append(preds1[i])
    #    elif (preds1[i] == preds3[i]):
    #        preds.append(preds1[i])
    #    elif (preds2[i] == preds3[i]):