def extract_all(fp, fmt=None, root='.'): def find_decompressor(fmt_): dc_map = { 'gzip': (tarfile.open, 'r:gz'), 'zip': (zipfile.ZipFile, 'r'), 'bz2': (tarfile.open, 'r:bz2') } if not fmt_ in dc_map: raise ValueError('the `%s` format is not supported.' % (fmt_,)) return dc_map[fmt_] if not fmt: if fp.endswith('.zip'): fmt = 'zip' elif fp.endswith('.tar.gz') or fp.endswith('.tgz'): fmt = 'gzip' elif fp.endswith('.tar.bz2') or fp.endswith('.tbz'): fmt = 'bz2' else: fmt = 'None' opener, mode = find_decompressor(fmt) try: with opener(fp, mode) as f: f.extractall(path=root) except StandardError as e: logger.fatal('error occur while extracting file %s: %s', fp, str(e))
def prompt_for_eula(self): eula = self._eula_by_brand() print eula ret = self.io.require_confirmation("Do you accept the terms above?") if not ret: logger.fatal("Setup aborted, Cancelled by user") quit()
def get_train_loader(conf, data_mode, sample_identity=False): if data_mode == 'emore': root = conf.emore_folder/'imgs' elif data_mode == 'glint': root = conf.glint_folder/'imgs' else: logger.fatal('invalide data_mode {}'.format(data_mode)) exit(1) class_num, class_to_idx = find_classes(root) train_transform = trans.Compose([ trans.RandomHorizontalFlip(), trans.ColorJitter(brightness=0.2, contrast=0.15, saturation=0, hue=0), trans.ToTensor(), trans.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) extensions = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif'] path_ds = make_dataset(root, class_to_idx, extensions) dataset = ImageDataset(path_ds, train_transform) if sample_identity: train_sampler = DistRandomIdentitySampler(dataset.dataset, conf.batch_size, conf.num_instances) else: train_sampler = distributed.DistributedSampler(dataset) loader = DataLoader(dataset, batch_size=conf.batch_size, shuffle=False, pin_memory=conf.pin_memory, num_workers=conf.num_workers, sampler = train_sampler) return loader, class_num
def main(): arguments = docopt.docopt(__doc__, version=VERSION_NUMBER) input_map = arguments["<contact_map>"] binning = int(arguments["--binning"]) normalized = arguments["--normalize"] vmax = float(arguments["--max"]) output_file = arguments["--output"] process_matrix = save_matrix if not output_file or output_file == "output.png": process_matrix = plot_matrix raw_map = load_raw_matrix(input_map) sparse_map = raw_cols_to_sparse(raw_map) if normalized: sparse_map = hcs.normalize_sparse(sparse_map, norm="SCN") if binning > 1: binned_map = hcs.bin_sparse(M=sparse_map, subsampling_factor=binning) else: binned_map = sparse_map try: dense_map = sparse_to_dense(binned_map) process_matrix(dense_map, filename=output_file, vmax=vmax) except MemoryError: logger.fatal("Contact map is too large to load, try binning more")
def get_train_loader_from_txt(conf, data_mode, sample_identity=False): if data_mode == 'emore': txt_path = conf.emore_folder/'imgs'/'train_list.txt' elif data_mode == 'glint': txt_path = conf.glint_folder/'imgs'/'train_list.txt' else: logger.fatal('invalide data_mode {}'.format(data_mode)) exit(1) train_transform = trans.Compose([ trans.RandomHorizontalFlip(), trans.ColorJitter(brightness=0.2, contrast=0.15, saturation=0, hue=0), trans.ToTensor(), trans.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) dataset = ImageLandmarkDataset(txt_path, train_transform) if sample_identity: train_sampler = DistRandomIdentitySampler(dataset.dataset, conf.batch_size, conf.num_instances) else: train_sampler = distributed.DistributedSampler(dataset) loader = DataLoader(dataset, batch_size=conf.batch_size, shuffle=False, pin_memory=conf.pin_memory, num_workers=conf.num_workers, sampler = train_sampler) return loader, dataset.class_num