Exemplo n.º 1
0
    def testExport(self):
        """Basic case."""
        pt1 = ProofTerm.assume(Term.mk_equals(x, y))
        pt2 = ProofTerm.assume(Term.mk_equals(y, z))
        pt3 = ProofTerm.transitive(pt1, pt2)

        prf = pt3.export()
        self.assertEqual(len(prf.items), 3)
        self.assertEqual(thy.check_proof(prf), pt3.th)
Exemplo n.º 2
0
def get_encode_proof(th):
    """Given resulting theorem for an encoding, obtain the proof
    of the theorem.

    The theorem is structured as follows:

    Each of the assumptions, except the last, is an equality, where
    the right side is either an atom or a logical operation between
    atoms. We call these assumptions As.

    The last assumption is the original formula. We call it F.

    The conclusion is in CNF. Each clause except the last is an
    expansion of one of As. The last clause is obtained by performing
    substitutions of As on F.

    """
    As, F = th.hyps[:-1], th.hyps[-1]

    # Obtain the assumptions
    ptAs = [ProofTerm.assume(A) for A in As]
    ptF = ProofTerm.assume(F)

    # Obtain the expansion of each As to a non-atomic term.
    pts = []
    for ptA in ptAs:
        rhs = ptA.prop.rhs
        if logic.is_conj(rhs):
            pts.append(ptA.on_prop(thy, rewr_conv("encode_conj")))
        elif logic.is_disj(rhs):
            pts.append(ptA.on_prop(thy, rewr_conv("encode_disj")))
        elif rhs.is_implies():
            pts.append(ptA.on_prop(thy, rewr_conv("encode_imp")))
        elif rhs.is_equals():
            pts.append(ptA.on_prop(thy, rewr_conv("encode_eq")))
        elif logic.is_neg(rhs):
            pts.append(ptA.on_prop(thy, rewr_conv("encode_not")))

    # Obtain the rewrite of the original formula.
    cvs = [
        top_conv(rewr_conv(ProofTerm.symmetric(ptA), match_vars=False))
        for ptA in ptAs
    ]
    cv = every_conv(*cvs)

    pts.append(ptF.on_prop(thy, cv))

    pt = pts[0]
    for pt2 in pts[1:]:
        pt = logic_macro.apply_theorem(thy, 'conjI', pt, pt2)

    return pt.on_prop(thy, logic.norm_conj_assoc())
Exemplo n.º 3
0
    def get_proof_term(self, thy, t):
        if isinstance(self.pt, str):
            self.pt = ProofTerm.theorem(thy, self.pt)
            if self.sym:
                self.pt = ProofTerm.symmetric(self.pt)

        # Deconstruct th into assumptions and conclusion
        As, C = self.pt.assums, self.pt.concl
        assert Term.is_equals(C), "rewr_conv: theorem is not an equality."

        tyinst, inst = dict(), dict()

        if self.match_vars:
            try:
                matcher.first_order_match_incr(C.lhs, t, (tyinst, inst))
            except matcher.MatchException:
                raise ConvException()
        elif C.lhs != t:
            raise ConvException()

        pt = ProofTerm.substitution(inst,
                                    ProofTerm.subst_type(tyinst, self.pt))
        if self.conds is not None:
            pt = ProofTerm.implies_elim(pt, *self.conds)

        As = pt.assums
        for A in As:
            pt = ProofTerm.implies_elim(pt, ProofTerm.assume(A))
        return pt
Exemplo n.º 4
0
def compute_wp(thy, T, c, Q):
    """Compute the weakest precondition for the given command
    and postcondition. The computation is by case analysis on
    the form of c. Returns the validity theorem.

    """
    if c.head.is_const_name("Assign"):  # Assign a b
        a, b = c.args
        s = Var("s", T)
        P2 = Term.mk_abs(s, Q(function.mk_fun_upd(s, a, b(s).beta_conv())))
        return apply_theorem(thy,
                             "assign_rule",
                             inst={"b": b},
                             concl=Valid(T)(P2, c, Q))
    elif c.head.is_const_name("Seq"):  # Seq c1 c2
        c1, c2 = c.args
        wp1 = compute_wp(thy, T, c2, Q)  # Valid Q' c2 Q
        wp2 = compute_wp(thy, T, c1, wp1.prop.args[0])  # Valid Q'' c1 Q'
        return apply_theorem(thy, "seq_rule", wp2, wp1)
    elif c.head.is_const_name("While"):  # While b I c
        _, I, _ = c.args
        pt = apply_theorem(thy, "while_rule", concl=Valid(T)(I, c, Q))
        pt0 = ProofTerm.assume(pt.assums[0])
        pt1 = vcg(thy, T, pt.assums[1])
        return ProofTerm.implies_elim(pt, pt0, pt1)
    else:
        raise NotImplementedError
Exemplo n.º 5
0
    def get_proof_term(self, thy, args, pts):
        dct = dict()

        def traverse_A(pt):
            # Given proof term showing a conjunction, put proof terms
            # showing atoms of the conjunction in dct.
            if is_conj(pt.prop):
                traverse_A(apply_theorem(thy, 'conjD1', pt))
                traverse_A(apply_theorem(thy, 'conjD2', pt))
            else:
                dct[pt.prop] = pt

        def traverse_C(t):
            # Return proof term with conclusion t
            if is_conj(t):
                left = traverse_C(t.arg1)
                right = traverse_C(t.arg)
                return apply_theorem(thy, 'conjI', left, right)
            else:
                assert t in dct.keys(), 'imp_conj_macro'
                return dct[t]

        As, C = args.strip_implies()
        assert len(As) == 1, 'imp_conj_macro'
        A = As[0]

        traverse_A(ProofTerm.assume(A))
        concl = traverse_C(C)
        return ProofTerm.implies_intr(A, concl)
Exemplo n.º 6
0
    def get_proof_term(self, thy, args, pts):
        As, C = args.strip_implies()
        assert C in As, "trivial_macro"

        pt = ProofTerm.assume(C)
        for A in reversed(As):
            pt = ProofTerm.implies_intr(A, pt)
        return pt
Exemplo n.º 7
0
    def testExport2(self):
        """Repeated theorems."""
        pt1 = ProofTerm.assume(Term.mk_equals(x, y))
        pt2 = ProofTerm.reflexive(f)
        pt3 = ProofTerm.combination(pt2, pt1)  # f x = f y
        pt4 = ProofTerm.combination(pt3, pt1)  # f x x = f y y

        prf = pt4.export()
        self.assertEqual(len(prf.items), 4)
        self.assertEqual(thy.check_proof(prf), pt4.th)
Exemplo n.º 8
0
    def get_proof_term(self, thy, goal, *, args=None, prevs=None):
        if args is None:
            var_names = []
        else:
            var_names = args

        vars, As, C = logic.strip_all_implies(goal.prop, var_names)

        pt = ProofTerm.sorry(Thm(list(goal.hyps) + As, C))
        ptAs = [ProofTerm.assume(A) for A in As]
        ptVars = [ProofTerm.variable(var.name, var.T) for var in vars]
        return ProofTermDeriv('intros', thy, None, ptVars + ptAs + [pt])
Exemplo n.º 9
0
    def get_proof(self):
        invC = Const("inv", TFun(gcl.stateT, boolT))
        transC = Const("trans", TFun(gcl.stateT, gcl.stateT, boolT))
        s1 = Var("s1", gcl.stateT)
        s2 = Var("s2", gcl.stateT)
        prop = Thm.mk_implies(invC(s1), transC(s1, s2), invC(s2))
        # print(printer.print_thm(self.thy, prop))

        trans_pt = ProofTerm.assume(transC(s1, s2))
        # print(printer.print_thm(self.thy, trans_pt.th))
        P = Term.mk_implies(invC(s1), invC(s2))
        ind_pt = apply_theorem(self.thy,
                               "trans_cases",
                               inst={
                                   "a1": s1,
                                   "a2": s2,
                                   "P": P
                               })
        # print(printer.print_thm(self.thy, ind_pt.th))

        ind_As, ind_C = ind_pt.prop.strip_implies()
        for ind_A in ind_As[1:-1]:
            # print("ind_A: ", printer.print_term(self.thy, ind_A))
            vars, As, C = logic.strip_all_implies(ind_A, ["s", "k"])
            # for A in As:
            #     print("A: ", printer.print_term(self.thy, A))
            # print("C: ", printer.print_term(self.thy, C))
            eq1 = ProofTerm.assume(As[0])
            eq2 = ProofTerm.assume(As[1])
            guard = ProofTerm.assume(As[2])
            inv_pre = ProofTerm.assume(As[3]).on_arg(self.thy, rewr_conv(eq1)) \
                                             .on_prop(self.thy, rewr_conv("inv_def"))
            C_goal = ProofTerm.assume(C).on_arg(self.thy, rewr_conv(eq2)) \
                                        .on_prop(self.thy, rewr_conv("inv_def"))
Exemplo n.º 10
0
def vcg(thy, T, goal):
    """Compute the verification conditions for the goal."""
    P, c, Q = goal.args
    pt = compute_wp(thy, T, c, Q)
    entail_P = ProofTerm.assume(Entail(T)(P, pt.prop.args[0]))
    return apply_theorem(thy, "pre_rule", entail_P, pt)