Exemplo n.º 1
0
def main():
    print("PCA")
    pca.pca()
    print("RandomForest")
    rf.rf(2)
    print("KNN")
    knn.knn(2)
    print("SVC")
    svc.svc()
    print("GRID_SVC")
    svc.gridSearchScore()
    print("Logistic")
    logistic.Logistic().fit()
    print("DNN Classifier")
    classifier_model = classifier.classifier()
    classifier_model.fit()
Exemplo n.º 2
0
    # load smile data
    PATH = "../data/smile/"
    for idx, filename in enumerate(smilefiles):
        phi[idx] = vectorize(PATH + filename)
        labels.append(1)

    # load neutral data
    PATH = "../data/neutral/"
    offset = idx + 1
    for idx, filename in enumerate(neutralfiles):
        phi[idx + offset] = vectorize(PATH + filename)
        labels.append(0)
    """
    training the data with logistic regression
    """
    lr = logistic.Logistic(dim)
    lr.train(phi, labels)
    """
    open webcam and capture images
    """
    cv2.namedWindow("preview")
    vc = cv2.VideoCapture(0)

    if vc.isOpened():  # try to get the first frame
        rval, frame = vc.read()
    else:
        rval = False

    print "\n\n\n\n\npress space to take picture; press ESC to exit"

    while True:
Exemplo n.º 3
0
def getTrainingRes():
    """
    given a jpg image, vectorize the grayscale pixels to 
    a (width * height, 1) np array
    it is used to preprocess the data and transform it to feature space
    """
    def vectorize(filename):
        size = defaults.WIDTH, defaults.HEIGHT  # (width, height)
        im = Image.open(filename)
        resized_im = im.resize(size, Image.ANTIALIAS)  # resize image
        im_grey = resized_im.convert('L')  # convert the image to *greyscale*
        im_array = np.array(im_grey)  # convert to np array
        oned_array = im_array.reshape(1, size[0] * size[1])
        return oned_array

    """
    load training data
    """
    # create a list for filenames of smiles pictures
    smilefiles = []
    with open(defaults.smile_csv, 'rb') as csvfile:
        for rec in csv.reader(csvfile, delimiter='	'):
            smilefiles += rec

    # create a list for filenames of neutral pictures
    neutralfiles = []
    with open(defaults.neutral_csv, 'rb') as csvfile:
        for rec in csv.reader(csvfile, delimiter='	'):
            neutralfiles += rec

    # create a list for filenames of disgust pictures
    disgustfiles = []
    with open(defaults.disgust_csv, 'rb') as csvfile:
        for rec in csv.reader(csvfile, delimiter='	'):
            disgustfiles += rec

    # N x dim matrix to store the vectorized data (aka feature space)
    phi = np.zeros((len(smilefiles) + len(neutralfiles) + len(disgustfiles),
                    defaults.dim))
    # 1 x N vector to store binary labels of the data: 1 for smile and 0 for neutral
    labels = []

    # load smile data
    for idx, filename in enumerate(smilefiles):
        phi[idx] = vectorize(defaults.smile_imgs + filename)
        labels.append(0)

    # load neutral data
    offset = idx + 1
    for idx, filename in enumerate(neutralfiles):
        phi[idx + offset] = vectorize(defaults.neutral_imgs + filename)
        labels.append(1)

    # load disgust data
    offset = idx + 1
    for idx, filename in enumerate(disgustfiles):
        phi[idx + offset] = vectorize(defaults.disgust_imgs + filename)
        labels.append(2)
    """
    training the data with logistic regression
    """
    lr = logistic.Logistic(defaults.dim)
    lr.train(phi, labels)
    return lr
Exemplo n.º 4
0
	#Convert the picture into a numpy array
	buff = np.fromstring(stream.getvalue(), dtype=np.uint8)

	#Now creates an OpenCV image
	image = cv2.imdecode(buff, 1)
	return image

if __name__ == '__main__':

    ## Exists weigths
    if sys.argv[1]=="train":
        #Load training data
        lr=getTrainingRes()
    else:
        weigths = np.load(defaults.weigths_file)
        lr = logistic.Logistic(defaults.dim,weigths)
    """
    open webcam and capture images
    """
    if defaults.SHOW_PREVIEW:
        cv2.namedWindow("preview")
  
    print "\n--Starting to get images"
    if defaults.raspberry_plt:
        cam = picamera.PiCamera() 
        cam.resolution = (320, 240)
    else:
        cam = cv.CaptureFromCAM(0)
    
    while True:
        if defaults.raspberry_plt: