Exemplo n.º 1
0
    def __init__(self, numpy_rng, theano_rng=None, n_ins=784,
                 hidden_layers_sizes=[500, 500], n_outs=10):
        """This class is made to support a variable number of layers.

        :type numpy_rng: numpy.random.RandomState
        :param numpy_rng: numpy random number generator used to draw initial
                    weights

        :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
        :param theano_rng: Theano random generator; if None is given one is
                           generated based on a seed drawn from `rng`

        :type n_ins: int
        :param n_ins: dimension of the input to the DBN

        :type n_layers_sizes: list of ints
        :param n_layers_sizes: intermediate layers size, must contain
                               at least one value

        :type n_outs: int
        :param n_outs: dimension of the output of the network
        """

        self.sigmoid_layers = []
        self.rbm_layers = []
        self.params = []
        self.n_layers = len(hidden_layers_sizes)

        assert self.n_layers > 0

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))

        # allocate symbolic variables for the data
        self.x = T.matrix('x')  # the data is presented as rasterized images
        self.y = T.ivector('y')  # the labels are presented as 1D vector
                                 # of [int] labels

        # The DBN is an MLP, for which all weights of intermediate
        # layers are shared with a different RBM.  We will first
        # construct the DBN as a deep multilayer perceptron, and when
        # constructing each sigmoidal layer we also construct an RBM
        # that shares weights with that layer. During pretraining we
        # will train these RBMs (which will lead to chainging the
        # weights of the MLP as well) During finetuning we will finish
        # training the DBN by doing stochastic gradient descent on the
        # MLP.

        for i in xrange(self.n_layers):
            # construct the sigmoidal layer

            # the size of the input is either the number of hidden
            # units of the layer below or the input size if we are on
            # the first layer
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layers_sizes[i - 1]

            # the input to this layer is either the activation of the
            # hidden layer below or the input of the DBN if you are on
            # the first layer
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].output

            sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid)

            # add the layer to our list of layers
            self.sigmoid_layers.append(sigmoid_layer)

            # its arguably a philosophical question...  but we are
            # going to only declare that the parameters of the
            # sigmoid_layers are parameters of the DBN. The visible
            # biases in the RBM are parameters of those RBMs, but not
            # of the DBN.
            self.params.extend(sigmoid_layer.params)

            # Construct an RBM that shared weights with this layer
            rbm_layer = RBM(numpy_rng=numpy_rng,
                            theano_rng=theano_rng,
                            input=layer_input,
                            n_visible=input_size,
                            n_hidden=hidden_layers_sizes[i],
                            W=sigmoid_layer.W,
                            hbias=sigmoid_layer.b)
            self.rbm_layers.append(rbm_layer)

        # We now need to add a logistic layer on top of the MLP
        self.logLayer = LogisticRegression(
            input=self.sigmoid_layers[-1].output,
            n_in=hidden_layers_sizes[-1],
            n_out=n_outs)
        self.params.extend(self.logLayer.params)

        # compute the cost for second phase of training, defined as the
        # negative log likelihood of the logistic regression (output) layer
        self.finetune_cost = self.logLayer.negative_log_likelihood(self.y)

        # compute the gradients with respect to the model parameters
        # symbolic variable that points to the number of errors made on the
        # minibatch given by self.x and self.y
        self.errors = self.logLayer.errors(self.y)
Exemplo n.º 2
0
class DBN(object):
    """Deep Belief Network

    A deep belief network is obtained by stacking several RBMs on top of each
    other. The hidden layer of the RBM at layer `i` becomes the input of the
    RBM at layer `i+1`. The first layer RBM gets as input the input of the
    network, and the hidden layer of the last RBM represents the output. When
    used for classification, the DBN is treated as a MLP, by adding a logistic
    regression layer on top.
    """

    def __init__(self, numpy_rng, theano_rng=None, n_ins=784,
                 hidden_layers_sizes=[500, 500], n_outs=10):
        """This class is made to support a variable number of layers.

        :type numpy_rng: numpy.random.RandomState
        :param numpy_rng: numpy random number generator used to draw initial
                    weights

        :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
        :param theano_rng: Theano random generator; if None is given one is
                           generated based on a seed drawn from `rng`

        :type n_ins: int
        :param n_ins: dimension of the input to the DBN

        :type n_layers_sizes: list of ints
        :param n_layers_sizes: intermediate layers size, must contain
                               at least one value

        :type n_outs: int
        :param n_outs: dimension of the output of the network
        """

        self.sigmoid_layers = []
        self.rbm_layers = []
        self.params = []
        self.n_layers = len(hidden_layers_sizes)

        assert self.n_layers > 0

        if not theano_rng:
            theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))

        # allocate symbolic variables for the data
        self.x = T.matrix('x')  # the data is presented as rasterized images
        self.y = T.ivector('y')  # the labels are presented as 1D vector
                                 # of [int] labels

        # The DBN is an MLP, for which all weights of intermediate
        # layers are shared with a different RBM.  We will first
        # construct the DBN as a deep multilayer perceptron, and when
        # constructing each sigmoidal layer we also construct an RBM
        # that shares weights with that layer. During pretraining we
        # will train these RBMs (which will lead to chainging the
        # weights of the MLP as well) During finetuning we will finish
        # training the DBN by doing stochastic gradient descent on the
        # MLP.

        for i in xrange(self.n_layers):
            # construct the sigmoidal layer

            # the size of the input is either the number of hidden
            # units of the layer below or the input size if we are on
            # the first layer
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layers_sizes[i - 1]

            # the input to this layer is either the activation of the
            # hidden layer below or the input of the DBN if you are on
            # the first layer
            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].output

            sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid)

            # add the layer to our list of layers
            self.sigmoid_layers.append(sigmoid_layer)

            # its arguably a philosophical question...  but we are
            # going to only declare that the parameters of the
            # sigmoid_layers are parameters of the DBN. The visible
            # biases in the RBM are parameters of those RBMs, but not
            # of the DBN.
            self.params.extend(sigmoid_layer.params)

            # Construct an RBM that shared weights with this layer
            rbm_layer = RBM(numpy_rng=numpy_rng,
                            theano_rng=theano_rng,
                            input=layer_input,
                            n_visible=input_size,
                            n_hidden=hidden_layers_sizes[i],
                            W=sigmoid_layer.W,
                            hbias=sigmoid_layer.b)
            self.rbm_layers.append(rbm_layer)

        # We now need to add a logistic layer on top of the MLP
        self.logLayer = LogisticRegression(
            input=self.sigmoid_layers[-1].output,
            n_in=hidden_layers_sizes[-1],
            n_out=n_outs)
        self.params.extend(self.logLayer.params)

        # compute the cost for second phase of training, defined as the
        # negative log likelihood of the logistic regression (output) layer
        self.finetune_cost = self.logLayer.negative_log_likelihood(self.y)

        # compute the gradients with respect to the model parameters
        # symbolic variable that points to the number of errors made on the
        # minibatch given by self.x and self.y
        self.errors = self.logLayer.errors(self.y)

    def pretraining_functions(self, train_set_x, batch_size, k):
        '''Generates a list of functions, for performing one step of
        gradient descent at a given layer. The function will require
        as input the minibatch index, and to train an RBM you just
        need to iterate, calling the corresponding function on all
        minibatch indexes.

        :type train_set_x: theano.tensor.TensorType
        :param train_set_x: Shared var. that contains all datapoints used
                            for training the RBM
        :type batch_size: int
        :param batch_size: size of a [mini]batch
        :param k: number of Gibbs steps to do in CD-k / PCD-k

        '''

        # index to a [mini]batch
        index = T.lscalar('index')  # index to a minibatch
        learning_rate = T.scalar('lr')  # learning rate to use

        # number of batches
        n_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
        # begining of a batch, given `index`
        batch_begin = index * batch_size
        # ending of a batch given `index`
        batch_end = batch_begin + batch_size

        pretrain_fns = []
        for rbm in self.rbm_layers:

            # get the cost and the updates list
            # using CD-k here (persisent=None) for training each RBM.
            # TODO: change cost function to reconstruction error
            cost, updates = rbm.get_cost_updates(learning_rate,
                                                 persistent=None, k=k)

            # compile the theano function
            fn = theano.function(inputs=[index,
                            theano.Param(learning_rate, default=0.1)],
                                 outputs=cost,
                                 updates=updates,
                                 givens={self.x:
                                    train_set_x[batch_begin:batch_end]})
            # append `fn` to the list of functions
            pretrain_fns.append(fn)

        return pretrain_fns

    def build_finetune_functions(self, datasets, batch_size, learning_rate):
        '''Generates a function `train` that implements one step of
        finetuning, a function `validate` that computes the error on a
        batch from the validation set, and a function `test` that
        computes the error on a batch from the testing set

        :type datasets: list of pairs of theano.tensor.TensorType
        :param datasets: It is a list that contain all the datasets;
                        the has to contain three pairs, `train`,
                        `valid`, `test` in this order, where each pair
                        is formed of two Theano variables, one for the
                        datapoints, the other for the labels
        :type batch_size: int
        :param batch_size: size of a minibatch
        :type learning_rate: float
        :param learning_rate: learning rate used during finetune stage

        '''

        (train_set_x, train_set_y) = datasets[0]
        (valid_set_x, valid_set_y) = datasets[1]
        (test_set_x, test_set_y) = datasets[2]

        # compute number of minibatches for training, validation and testing
        n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
        n_valid_batches /= batch_size
        n_test_batches = test_set_x.get_value(borrow=True).shape[0]
        n_test_batches /= batch_size

        index = T.lscalar('index')  # index to a [mini]batch

        # compute the gradients with respect to the model parameters
        gparams = T.grad(self.finetune_cost, self.params)

        # compute list of fine-tuning updates
        updates = {}
        for param, gparam in zip(self.params, gparams):
            updates[param] = param - gparam * learning_rate

        train_fn = theano.function(inputs=[index],
              outputs=self.finetune_cost,
              updates=updates,
              givens={self.x: train_set_x[index * batch_size:
                                          (index + 1) * batch_size],
                      self.y: train_set_y[index * batch_size:
                                          (index + 1) * batch_size]})

        test_score_i = theano.function([index], self.errors,
                 givens={self.x: test_set_x[index * batch_size:
                                            (index + 1) * batch_size],
                         self.y: test_set_y[index * batch_size:
                                            (index + 1) * batch_size]})

        valid_score_i = theano.function([index], self.errors,
              givens={self.x: valid_set_x[index * batch_size:
                                          (index + 1) * batch_size],
                      self.y: valid_set_y[index * batch_size:
                                          (index + 1) * batch_size]})

        # Create a function that scans the entire validation set
        def valid_score():
            return [valid_score_i(i) for i in xrange(n_valid_batches)]

        # Create a function that scans the entire test set
        def test_score():
            return [test_score_i(i) for i in xrange(n_test_batches)]

        return train_fn, valid_score, test_score
Exemplo n.º 3
0
    def __init__(self, n_ins, hidden_layers_sizes, n_outs,
                 layers=None, log_layer=None, recurrent_layer=-1,
                 is_vector_y=False, log_activation=T.nnet.softmax):
        """ This class is made to support a variable number of layers.

        :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
        :param theano_rng: Theano random generator; if None is given one is
                           generated based on a seed drawn from `rng`

        :type n_ins: int
        :param n_ins: dimension of the input to the sdA

        :type n_layers_sizes: list of ints
        :param n_layers_sizes: intermediate layers size, must contain
                               at least one value

        :type n_outs: int
        :param n_outs: dimension of the output of the network

        """
        
        if recurrent_layer >= 0 or (layers and isinstance(layers[1][-1], HiddenRecurrentLayer)):
            print("Creating a recurrent stacked denoising autoencoder with:")
        else:
            print("Creating a stacked denoising autoencoder with:")
        print("\tinput size: " + str(n_ins))
        print("\thidden layers sizes: " + str(hidden_layers_sizes))
        print("\toutput size: " + str(n_outs))
        if recurrent_layer >= 0:
            print recurrent_layer
        elif (layers and isinstance(layers[1][-1], HiddenRecurrentLayer)):
            print("\trecurrent layer #: " + str(len(layers[1]) - 1))

        self.sigmoid_layers = []
        self.dA_layers = []
        self.n_layers = len(hidden_layers_sizes)
            
        self.params = []
        assert self.n_layers > 0

        numpy_rng = numpy.random.RandomState(89677)
        theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
        # allocate symbolic variables for the data
        self.x = T.matrix('x')  # the spectrum data
        if (is_vector_y):
            self.y = T.ivector('y')
        else:
            self.y = T.matrix('y')  # target tonnetz vectors

        # The SdA is an MLP, for which all weights of intermediate layers
        # are shared with a different denoising autoencoders
        # We will first construct the SdA as a deep multilayer perceptron,
        # and when constructing each sigmoidal layer we also construct a
        # denoising autoencoder that shares weights with that layer
        # During pretraining we will train these autoencoders (which will
        # lead to chainging the weights of the MLP as well)
        # During finetunining we will finish training the SdA by doing
        # stochastich gradient descent on the MLP

        for i in xrange(self.n_layers):
            # construct the sigmoidal layer

            # the size of the input is either the number of hidden units of
            # the layer below or the input size if we are on the first layer
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layers_sizes[i - 1]
                
            if (hidden_layers_sizes[i] - input_size > 0):
                beta = 0.1
            else:
                beta = 0
                
            # the input to this layer is either the activation of the hidden
            # layer below or the input of the SdA if you are on the first
            # layer

            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].output

            if (layers):
                if isinstance(layers[1][i], HiddenRecurrentLayer):
                    sigmoid_layer = HiddenRecurrentLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid,
                                        W=layers[1][i].W,
                                        b=layers[1][i].b,
                                        U=layers[1][i].U)
                else:
                    sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid,
                                        W=layers[1][i].W,
                                        b=layers[1][i].b)
            else:
                if i == recurrent_layer:
                    sigmoid_layer = HiddenRecurrentLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid)
                else:
                    sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid)
            # add the layer to our list of layers
            self.sigmoid_layers.append(sigmoid_layer)
            
            # Construct a denoising autoencoder that shared weights with this
            # layer
            dA_layer = dA(numpy_rng=numpy_rng,
                      theano_rng=theano_rng,
                      input=layer_input,
                      n_visible=input_size,
                      beta = beta,
                      n_hidden=hidden_layers_sizes[i],
                      W=sigmoid_layer.W,
                      bhid=sigmoid_layer.b)
            self.dA_layers.append(dA_layer)
                
            # its arguably a philosophical question...
            # but we are going to only declare that the parameters of the
            # sigmoid_layers are parameters of the StackedDAA
            # the visible biases in the dA are parameters of those
            # dA, but not the SdA
            self.params.extend(sigmoid_layer.params)

        # We now need to add a logistic layer on top of the MLP
        if (log_layer):
            self.logLayer = LogisticRegression(
                             input=self.sigmoid_layers[-1].output,
                             n_in=hidden_layers_sizes[-1], n_out=n_outs,
                             W=log_layer.W, b=log_layer.b,
                             activation=log_activation)
        else:
            self.logLayer = LogisticRegression(
                             input=self.sigmoid_layers[-1].output,
                             n_in=hidden_layers_sizes[-1], n_out=n_outs,
                             activation=log_activation)

        self.params.extend(self.logLayer.params)
        
        # construct a function that implements one step of finetunining

        if (is_vector_y):
            # compute the cost for second phase of training,
            # defined as the negative log likelihood
            [self.pre_act, self.finetune_cost] = self.logLayer.negative_log_likelihood(self.y)
            # compute the gradients with respect to the model parameters
            # symbolic variable that points to the number of errors made on the
            # minibatch given by self.x and self.y
            self.errors = self.logLayer.errors(self.y)
        else:
            [self.pre_act, self.quadratic_loss] = self.logLayer.quadratic_loss(self.y)
Exemplo n.º 4
0
    def __init__(self, layers_size, hidden=None, out=None,
                 log_activation=T.nnet.softmax):
        rng = numpy.random.RandomState(89677)
        n_in = layers_size[0]
        n_hid = layers_size[1]
        n_out = layers_size[2]

        self.x = T.matrix('x')  # the chroma data
        self.y = T.matrix('y')  # target vectors

        if (hidden):
            self.hiddenLayer = HiddenRecurrentLayer(
                                        rng=rng,
                                        input=self.x,
                                        n_in=n_in,
                                        n_out=n_hid,
                                        activation=theano.tensor.tanh,
                                        W=hidden.W,
                                        b=hidden.b,
                                        U=hidden.U)
        else:
            self.hiddenLayer = HiddenRecurrentLayer(
                                        rng=rng,
                                        input=self.x,
                                        n_in=n_in,
                                        n_out=n_hid,
                                        activation=theano.tensor.tanh)

        if (out):
            self.logRegressionLayer = LogisticRegression(
                input=self.hiddenLayer.output,
                n_in=n_hid,
                n_out=n_out,
                W = out.W,
                b = out.b,
                activation=log_activation)
        else:
            self.logRegressionLayer = LogisticRegression(
                             input=self.hiddenLayer.output,
                             n_in=n_hid,
                             n_out=n_out,
                             activation=log_activation)

        # L1 norm ; one regularization option is to enforce L1 norm to
        # be small
        self.L1 = abs(self.hiddenLayer.W).sum() + abs(self.hiddenLayer.U).sum() \
                + abs(self.logRegressionLayer.W).sum()

        # square of L2 norm ; one regularization option is to enforce
        # square of L2 norm to be small
        self.L2_sqr = (self.hiddenLayer.W ** 2).sum() + abs(self.hiddenLayer.U ** 2).sum()\
                    + (self.logRegressionLayer.W ** 2).sum()

        # negative log likelihood of the MLP is given by the negative
        # log likelihood of the output of the model, computed in the
        # logistic regression layer
#        self.negative_log_likelihood = self.logRegressionLayer.negative_log_likelihood
        # quadratic loss
        [self.pre_act, self.quadratic_loss] = self.logRegressionLayer.quadratic_loss(self.y)
        self.lin_hidden = self.hiddenLayer.lin_output
        # same holds for the function computing the number of errors
        #self.errors = self.logRegressionLayer.errors(self.y)

        # the parameters of the model are the parameters of the two layer it is
        # made out of
        self.params = self.hiddenLayer.params + self.logRegressionLayer.params
Exemplo n.º 5
0
class SdA(object):
    """Stacked denoising auto-encoder class (SdA)

    A stacked denoising autoencoder model is obtained by stacking several
    dAs. The hidden layer of the dA at layer `i` becomes the input of
    the dA at layer `i+1`. The first layer dA gets as input the input of
    the SdA, and the hidden layer of the last dA represents the output.
    Note that after pretraining, the SdA is dealt with as a normal MLP,
    the dAs are only used to initialize the weights.
    """

    def __init__(self, n_ins, hidden_layers_sizes, n_outs,
                 layers=None, log_layer=None, recurrent_layer=-1,
                 is_vector_y=False, log_activation=T.nnet.softmax):
        """ This class is made to support a variable number of layers.

        :type theano_rng: theano.tensor.shared_randomstreams.RandomStreams
        :param theano_rng: Theano random generator; if None is given one is
                           generated based on a seed drawn from `rng`

        :type n_ins: int
        :param n_ins: dimension of the input to the sdA

        :type n_layers_sizes: list of ints
        :param n_layers_sizes: intermediate layers size, must contain
                               at least one value

        :type n_outs: int
        :param n_outs: dimension of the output of the network

        """
        
        if recurrent_layer >= 0 or (layers and isinstance(layers[1][-1], HiddenRecurrentLayer)):
            print("Creating a recurrent stacked denoising autoencoder with:")
        else:
            print("Creating a stacked denoising autoencoder with:")
        print("\tinput size: " + str(n_ins))
        print("\thidden layers sizes: " + str(hidden_layers_sizes))
        print("\toutput size: " + str(n_outs))
        if recurrent_layer >= 0:
            print recurrent_layer
        elif (layers and isinstance(layers[1][-1], HiddenRecurrentLayer)):
            print("\trecurrent layer #: " + str(len(layers[1]) - 1))

        self.sigmoid_layers = []
        self.dA_layers = []
        self.n_layers = len(hidden_layers_sizes)
            
        self.params = []
        assert self.n_layers > 0

        numpy_rng = numpy.random.RandomState(89677)
        theano_rng = RandomStreams(numpy_rng.randint(2 ** 30))
        # allocate symbolic variables for the data
        self.x = T.matrix('x')  # the spectrum data
        if (is_vector_y):
            self.y = T.ivector('y')
        else:
            self.y = T.matrix('y')  # target tonnetz vectors

        # The SdA is an MLP, for which all weights of intermediate layers
        # are shared with a different denoising autoencoders
        # We will first construct the SdA as a deep multilayer perceptron,
        # and when constructing each sigmoidal layer we also construct a
        # denoising autoencoder that shares weights with that layer
        # During pretraining we will train these autoencoders (which will
        # lead to chainging the weights of the MLP as well)
        # During finetunining we will finish training the SdA by doing
        # stochastich gradient descent on the MLP

        for i in xrange(self.n_layers):
            # construct the sigmoidal layer

            # the size of the input is either the number of hidden units of
            # the layer below or the input size if we are on the first layer
            if i == 0:
                input_size = n_ins
            else:
                input_size = hidden_layers_sizes[i - 1]
                
            if (hidden_layers_sizes[i] - input_size > 0):
                beta = 0.1
            else:
                beta = 0
                
            # the input to this layer is either the activation of the hidden
            # layer below or the input of the SdA if you are on the first
            # layer

            if i == 0:
                layer_input = self.x
            else:
                layer_input = self.sigmoid_layers[-1].output

            if (layers):
                if isinstance(layers[1][i], HiddenRecurrentLayer):
                    sigmoid_layer = HiddenRecurrentLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid,
                                        W=layers[1][i].W,
                                        b=layers[1][i].b,
                                        U=layers[1][i].U)
                else:
                    sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid,
                                        W=layers[1][i].W,
                                        b=layers[1][i].b)
            else:
                if i == recurrent_layer:
                    sigmoid_layer = HiddenRecurrentLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid)
                else:
                    sigmoid_layer = HiddenLayer(rng=numpy_rng,
                                        input=layer_input,
                                        n_in=input_size,
                                        n_out=hidden_layers_sizes[i],
                                        activation=T.nnet.sigmoid)
            # add the layer to our list of layers
            self.sigmoid_layers.append(sigmoid_layer)
            
            # Construct a denoising autoencoder that shared weights with this
            # layer
            dA_layer = dA(numpy_rng=numpy_rng,
                      theano_rng=theano_rng,
                      input=layer_input,
                      n_visible=input_size,
                      beta = beta,
                      n_hidden=hidden_layers_sizes[i],
                      W=sigmoid_layer.W,
                      bhid=sigmoid_layer.b)
            self.dA_layers.append(dA_layer)
                
            # its arguably a philosophical question...
            # but we are going to only declare that the parameters of the
            # sigmoid_layers are parameters of the StackedDAA
            # the visible biases in the dA are parameters of those
            # dA, but not the SdA
            self.params.extend(sigmoid_layer.params)

        # We now need to add a logistic layer on top of the MLP
        if (log_layer):
            self.logLayer = LogisticRegression(
                             input=self.sigmoid_layers[-1].output,
                             n_in=hidden_layers_sizes[-1], n_out=n_outs,
                             W=log_layer.W, b=log_layer.b,
                             activation=log_activation)
        else:
            self.logLayer = LogisticRegression(
                             input=self.sigmoid_layers[-1].output,
                             n_in=hidden_layers_sizes[-1], n_out=n_outs,
                             activation=log_activation)

        self.params.extend(self.logLayer.params)
        
        # construct a function that implements one step of finetunining

        if (is_vector_y):
            # compute the cost for second phase of training,
            # defined as the negative log likelihood
            [self.pre_act, self.finetune_cost] = self.logLayer.negative_log_likelihood(self.y)
            # compute the gradients with respect to the model parameters
            # symbolic variable that points to the number of errors made on the
            # minibatch given by self.x and self.y
            self.errors = self.logLayer.errors(self.y)
        else:
            [self.pre_act, self.quadratic_loss] = self.logLayer.quadratic_loss(self.y)

    def pretraining_functions(self, train_set_x, batch_size):
        ''' Generates a list of functions, each of them implementing one
        step in trainnig the dA corresponding to the layer with same index.
        The function will require as input the minibatch index, and to train
        a dA you just need to iterate, calling the corresponding function on
        all minibatch indexes.

        :type train_set_x: theano.tensor.TensorType
        :param train_set_x: Shared variable that contains all datapoints used
                            for training the dA

        :type batch_size: int
        :param batch_size: size of a [mini]batch

        :type learning_rate: float
        :param learning_rate: learning rate used during training for any of
                              the dA layers
        '''

        # index to a [mini]batch
        index = T.lscalar('index')  # index to a minibatch
        corruption_level = T.scalar('corruption')  # % of corruption to use
        learning_rate = T.scalar('lr')  # learning rate to use
        # number of batches
        n_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
        # begining of a batch, given `index`
        batch_begin = index * batch_size
        # ending of a batch given `index`
        batch_end = batch_begin + batch_size

        def detect_nan(i, node, fn):
            for output in fn.outputs:
                if numpy.any(pandas.isnull(output[0])):
                    print '*** NaN detected ***'
                    print 'Inputs : %s' % [input[0] for input in fn.inputs]
#                theano.printing.debugprint(node)
                    print 'Outputs: %s' % [output[0] for output in fn.outputs]
                    raise Exception('Nan detected')
                break

        pretrain_fns = []
        for dA in self.dA_layers:
            # get the cost and the updates list
            cost, updates = dA.get_cost_updates(corruption_level,
                                                learning_rate)
            # compile the theano function
            fn = theano.function(inputs=[index,
                              theano.Param(corruption_level, default=0.2),
                              theano.Param(learning_rate, default=0.1)],
                                 outputs=cost,
                                 updates=updates,
                                 givens={self.x: train_set_x[batch_begin:
                                                             batch_end]})#, # comment here
                                 #mode=theano.compile.MonitorMode(
                                 #post_func=detect_nan))
            # append `fn` to the list of functions
            pretrain_fns.append(fn)

        return pretrain_fns

    def build_finetune_functions(self, datasets, batch_size, learning_rate, useQuadratic=True):
        '''Generates a function `train` that implements one step of
        finetuning, a function `validate` that computes the error on
        a batch from the validation set, and a function `test` that
        computes the error on a batch from the testing set

        :type datasets: list of pairs of theano.tensor.TensorType
        :param datasets: It is a list that contain all the datasets;
                         the has to contain three pairs, `train`,
                         `valid`, `test` in this order, where each pair
                         is formed of two Theano variables, one for the
                         datapoints, the other for the labels

        :type batch_size: int
        :param batch_size: size of a minibatch

        :type learning_rate: float
        :param learning_rate: learning rate used during finetune stage
        '''

        (train_set_x, train_set_y) = datasets[0]
        (valid_set_x, valid_set_y) = datasets[1]
        (test_set_x, test_set_y) = datasets[2]

        # compute number of minibatches for training, validation and testing
        n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
        n_valid_batches /= batch_size
        n_test_batches = test_set_x.get_value(borrow=True).shape[0]
        n_test_batches /= batch_size

        index = T.lscalar('index')  # index to a [mini]batch

        # compute the gradients with respect to the model parameters
        if (useQuadratic):
            gparams = T.grad(self.quadratic_loss, self.params)
        else:
            gparams = T.grad(self.finetune_cost, self.params)

        # compute list of fine-tuning updates
        updates = {}
        for param, gparam in zip(self.params, gparams):
            updates[param] = param - gparam * learning_rate
        updates=collections.OrderedDict(updates.items())

        if (useQuadratic):
            train_fn = theano.function(inputs=[index],
                  outputs=[self.pre_act, self.quadratic_loss],
                  updates=updates,
                  givens={
                    self.x: train_set_x[index * batch_size:
                                        (index + 1) * batch_size],
                    self.y: train_set_y[index * batch_size:
                                        (index + 1) * batch_size]})
            test_score_i = theano.function([index], [self.pre_act, self.quadratic_loss],
                  givens={
                    self.x: test_set_x[index * batch_size:
                                        (index + 1) * batch_size],
                    self.y: test_set_y[index * batch_size:
                                        (index + 1) * batch_size]})
            valid_score_i = theano.function([index], [self.pre_act, self.quadratic_loss],
                  givens={
                    self.x: valid_set_x[index * batch_size:
                                        (index + 1) * batch_size],
                    self.y: valid_set_y[index * batch_size:
                                        (index + 1) * batch_size]})
        else:
            train_fn = theano.function(inputs=[index],
                  outputs=self.finetune_cost,
                  updates=updates,
                  givens={
                    self.x: train_set_x[index * batch_size:
                                        (index + 1) * batch_size],
                    self.y: train_set_y[index * batch_size:
                                        (index + 1) * batch_size]})
            test_score_i = theano.function([index], self.errors,
                     givens={
                       self.x: test_set_x[index * batch_size:
                                          (index + 1) * batch_size],
                       self.y: test_set_y[index * batch_size:
                                          (index + 1) * batch_size]})
    
            valid_score_i = theano.function([index], self.errors,
                  givens={
                     self.x: valid_set_x[index * batch_size:
                                         (index + 1) * batch_size],
                     self.y: valid_set_y[index * batch_size:
                                         (index + 1) * batch_size]})

        # Create a function that scans the entire validation set
        def valid_score():
            return [valid_score_i(i) for i in xrange(n_valid_batches)]

        # Create a function that scans the entire test set
        def test_score():
            return [test_score_i(i)[1] for i in xrange(n_test_batches)]

        return train_fn, valid_score, test_score

    def get_result(self, m):
        z = self.logLayer.p_y_given_x
        result = theano.function([], z, givens={self.x: m})
        return result()

    def get_pred(self, m):
        z = self.logLayer.y_pred
        result = theano.function([], z, givens={self.x: m})
        return result()

    def get_sda_features(self, m):
        z = self.sigmoid_layers[-1].output
        result = theano.function([], z, givens={self.x: m})
        return result()