def calculatePerformanceReference(connDbMaster,
                                  start,
                                  end,
                                  resetReference=False):
    cursor = connDbMaster.cursor()

    if resetReference:
        masterdao.resetLogPathDurationData(cursor)
        connDbMaster.commit()

    hosts = masterdao.findHosts(cursor)
    for host in hosts:
        components = masterdao.findComponentsByHostId(cursor, host['id'])
        for component in components:
            logger.debug('Process:' + str(component))
            rowsPaths = masterdao.findLogPathsByComponentId(
                cursor, component['id'])

            for rowpath in rowsPaths:
                pathId = rowpath[0]
                (count, avg, std, maxv) = masterdao.findReferencePathMeasures(
                    cursor, pathId, start, end, True)
                masterdao.updateLogPathDurationData(cursor, pathId, count, avg,
                                                    std, maxv, start, end)
            connDbMaster.commit()
Exemplo n.º 2
0
 def findComponentsByHostId(self, hostId):
     """
     ***********************************************************************
     
     ***********************************************************************
     """
     #TODO AGENTiD O hOSTiD
     return masterdao.findComponentsByHostId(self.cursor, hostId)
Exemplo n.º 3
0
    def getPerformanceData(self, start, end):
        """
        ***********************************************************************
        
        ***********************************************************************
        """
        performanceData = []

        hosts = masterdao.findHosts(self.cursor)
        for host in hosts:
            components = masterdao.findComponentsByHostId(
                self.cursor, host['id'])
            for component in components:
                results = masterdao.findPerformanceMeasures(
                    self.cursor, component['id'], start, end)
                performanceData.append({
                    'instance': component['name'],
                    'results': results
                })

        return {'start': start, 'end': end, 'performanceData': performanceData}
def processOutliers(connDbMaster, start, end):
    cursor = connDbMaster.cursor()

    hosts = masterdao.findHosts(cursor)
    #    hosts = [ masterdao.findHostByKey(cursor, "device") ]
    for host in hosts:
        components = masterdao.findComponentsByHostId(cursor, host['id'])
        for component in components:
            logger.debug('Process:' + str(component))
            rowsPaths = masterdao.findLogPathsByComponentId(
                cursor, component['id'])

            for rowpath in rowsPaths:
                pathId = rowpath[0]
                (count, avg, std, maxv) = masterdao.findReferencePathMeasures(
                    cursor, pathId, start, end, True)
                if avg == None or std == None: continue
                if std == 0: std = 0.1
                vmax = avg + 3 * std
                masterdao.updatePathMeasureRefFlagByAvgRange(
                    cursor, pathId, start, end, vmax, False)

            connDbMaster.commit()
Exemplo n.º 5
0
    #    hosts = [ masterdao.findHostByKey(cursor, "device") ]

    componentList = []

    colnamesAnom = ['component', 'error', 'description']
    errorTestList = []
    errorTrainList = []
    descriptionAnomList = []

    colnamesRegr = ['component', 'mse', 'r2', 'description']
    mseList = []
    r2List = []
    descriptionRegrList = []

    for host in hosts:
        components = masterdao.findComponentsByHostId(cursor, host['id'])
        for component in components:
            logger.debug('Process:' + str(component))

            mTypes = masterdao.findMeasuresTypesByComponent(
                cursor, component['id'])
            df = pd.read_csv('/logmapper/data/arrange_' + component['key'] +
                             '.csv')
            df.set_index('date', inplace=True)

            componentList.append(component['name'])

            dft = transform.selectAndTransformMetricsAndEvents(df, mTypes)
            dfsvm, nuBest, gammaBest, errorMin = findBestSvmParameters(dft)
            if nuBest:
                logger.debug("Best: nu={:f} gamma={:f} errorMin={:f}".format(
Exemplo n.º 6
0
def measureAndPredict(connDbMaster, start, end):

    performance.calcPathsPerformance(connDbMaster, start, end)

    cursor = connDbMaster.cursor()
    hosts = masterdao.findHosts(cursor)
    for host in hosts:
        components = masterdao.findComponentsByHostId(cursor, host['id'])
        for component in components:
            logger.debug('Process:' + str(component))

            mTypes = masterdao.findMeasuresTypesByComponent(
                cursor, component['id'])

            performance.calcPerformanceByComponent(connDbMaster,
                                                   component['id'],
                                                   component['hostId'], start,
                                                   end)

            df = arrange.arrangeComponentData(cursor,
                                              component['id'],
                                              component['hostId'],
                                              start,
                                              end,
                                              ref=None)
            logger.debug("len(df)=" + str(len(df)))

            anomalyPredicted = predictAnomalies(component['key'], df, mTypes)
            for index, row in anomalyPredicted.iterrows():
                resultId = masterdao.findPerfomanceMeasure(
                    cursor, index, component['id'])
                if resultId:
                    masterdao.updateAnomalyPredicted(cursor, resultId['id'],
                                                     row['anomaly'])
                else:
                    period = lmutil.calcTimeGroup(index)
                    masterdao.createPerfomanceMeasureWithAnomaly(
                        cursor, index, period, component['hostId'],
                        component['id'], row['anomaly'])
            connDbMaster.commit()

            perfPredicted = predictPerformance(component['key'], df, mTypes)
            for index, row in perfPredicted.iterrows():
                resultId = masterdao.findPerfomanceMeasure(
                    cursor, index, component['id'])
                if resultId:
                    masterdao.updatePerformancePredicted(
                        cursor, resultId['id'], row['predicted'])
            connDbMaster.commit()

            #            if len(df) > 5:
            #                anomalyPredictedDf = predictAnomalies(component['key'], df, mTypes)
            #                if anomalyPredictedDf == None or len(anomalyPredictedDf) == 0:
            #                    logger.debug("No data, Continue")
            #                    continue

            #            for i in range(len(df)):
            #                dfs = df.iloc[i:i+1]
            #                anomalyPredicted = predictAnomalies(component['key'], dfs, mTypes)
            #                perfPredicted = predictPerformance(component['key'], dfs, mTypes)
            #                if anomalyPredicted != None:
            #                    masterdao.updatePerfomanceMeasure(cursor, dfs.index[0], component['id'], perfPredicted, anomalyPredicted)

            connDbMaster.commit()