Exemplo n.º 1
0
def do_count(table_name, milvus_cli, mysql_cli):
    if not table_name:
        table_name = DEFAULT_TABLE
    try:
        if not milvus_cli.has_collection(table_name):
            return None
        milvus_num = milvus_cli.count(table_name)
        mysql_num = mysql_cli.count_table(table_name)
        LOGGER.debug("The num of Milvus: {} and Mysql: {}".format(
            milvus_num, mysql_num))
        assert milvus_num == mysql_num
        return milvus_num
    except Exception as e:
        LOGGER.error(" Error with count table {}".format(e))
        sys.exit(1)
Exemplo n.º 2
0
 def search_by_milvus_ids(self, ids, table_name):
     self.test_connection()
     str_ids = str(ids).replace('[', '').replace(']', '')
     sql = "select * from " + table_name + " where milvus_id in (" + str_ids + ") order by field (milvus_id," + str_ids + ");"
     try:
         self.cursor.execute(sql)
         results = self.cursor.fetchall()
         results_id = [res[0] for res in results]
         results_title = [res[1] for res in results]
         results_text = [res[2] for res in results]
         LOGGER.debug("MYSQL search by milvus id.")
         return results_id, results_title, results_text
     except Exception as e:
         LOGGER.error("MYSQL ERROR: {} with sql: {}".format(e, sql))
         sys.exit(1)
Exemplo n.º 3
0
 def insert(self, collection_name, vectors):
     try:
         self.create_collection(collection_name)
         self.collection = Collection(name=collection_name)
         data = [vectors]
         mr = self.collection.insert(data)
         ids = mr.primary_keys
         self.collection.load()
         LOGGER.debug(
             "Insert vectors to Milvus in collection: {} with {} rows".
             format(collection_name, len(vectors)))
         return ids
     except Exception as e:
         LOGGER.error("Failed to load data to Milvus: {}".format(e))
         sys.exit(1)
Exemplo n.º 4
0
def do_drop(table_name, milvus_cli, mysql_cli):
    if not table_name:
        table_name = DEFAULT_TABLE
    try:
        if not milvus_cli.has_collection(table_name):
            msg = "Milvus doesn't have a collection named {}".format(
                table_name)
            return msg
            #return {'status': True, 'msg': msg}
        status = milvus_cli.delete_collection(table_name)
        mysql_cli.delete_table(table_name)
        return status
    except Exception as e:
        LOGGER.error(" Error with  drop table: {}".format(e))
        sys.exit(1)
Exemplo n.º 5
0
 def create_index(self, collection_name):
     try:
         index_param = {'nlist': 16384}
         status = self.client.create_index(collection_name,
                                           IndexType.IVF_FLAT, index_param)
         if not status.code:
             LOGGER.debug(
                 "Successfully create index in collection:{} with param:{}".
                 format(collection_name, index_param))
             return status
         else:
             raise Exception(status.message)
     except Exception as e:
         LOGGER.error("Failed to create index: {}".format(e))
         sys.exit(1)
Exemplo n.º 6
0
 def insert(self, collection_name, vectors):
     try:
         self.create_colllection(collection_name)
         status, ids = self.client.insert(collection_name=collection_name,
                                          records=vectors)
         if not status.code:
             LOGGER.debug(
                 "Insert vectors to Milvus in collection: {} with {} rows".
                 format(collection_name, len(vectors)))
             return ids
         else:
             raise Exception(status.message)
     except Exception as e:
         LOGGER.error("Failed to load data to Milvus: {}".format(e))
         sys.exit(1)
Exemplo n.º 7
0
 def create_index(self, collection_name, index_params):
     try:
         self.set_collection(collection_name)
         status = self.collection.create_index(field_name="embedding",
                                               index_params=index_params)
         if not status.code:
             self.collection.load()
             LOGGER.debug(
                 "Successfully create index in collection:{} with param:{}".
                 format(collection_name, index_params))
             return status
         else:
             raise Exception(status.message)
     except Exception as e:
         LOGGER.error("Failed to create index: {}".format(e))
         sys.exit(1)
Exemplo n.º 8
0
def search_in_milvus(table_name, query_sentence,milvus_cli, mysql_cli):
    if not table_name:
        table_name = DEFAULT_TABLE
    try:
        query_data = [query_sentence]
        vectors = bc.encode(query_data) 
        query_list = normaliz_vec(vectors.tolist())
        LOGGER.info("Successfully insert query list")
        results = milvus_cli.search_vectors(table_name,query_list,TOP_K)
        vids = [str(x.id) for x in results[0]]
        print("-----------------", vids)
        ids,title,text= mysql_cli.search_by_milvus_ids(vids, table_name)
        distances = [x.distance for x in results[0]]
        return ids,title, text, distances
    except Exception as e:
        LOGGER.error(" Error with search : {}".format(e))
        sys.exit(1)
Exemplo n.º 9
0
 def create_colllection(self, collection_name):
     try:
         if not self.has_collection(collection_name):
             collection_param = {
                 'collection_name': collection_name,
                 'dimension': VECTOR_DIMENSION,
                 'index_file_size': INDEX_FILE_SIZE,
                 'metric_type': METRIC_TYPE
             }
             status = self.client.create_collection(collection_param)
             if status.code != 0:
                 raise Exception(status.message)
             LOGGER.debug(
                 "Create Milvus collection: {}".format(collection_name))
     except Exception as e:
         LOGGER.error("Failed to load data to Milvus: {}".format(e))
         sys.exit(1)
Exemplo n.º 10
0
def do_search(host, table_name, img_path, model, milvus_client, mysql_cli):
    if not table_name:
        table_name = DEFAULT_TABLE
    try:

        feat = model.resnet50_extract_feat(img_path)
        vectors = milvus_client.search_vectors(table_name, [feat], TOP_K)
        vids = [str(x.id) for x in vectors[0]]
        paths = mysql_cli.search_by_milvus_ids(vids, table_name)
        distances = [x.distance for x in vectors[0]]
        for i in range(len(paths)):
            tmp = "http://" + str(host) + "/data?gif_path=" + str(paths[i])
            paths[i] = tmp
        return paths, distances
    except Exception as e:
        LOGGER.error(" Error with search : {}".format(e))
        sys.exit(1)
Exemplo n.º 11
0
 def search_vectors(self, collection_name, vectors, top_k):
     try:
         search_param = {'nprobe': 16}
         status, result = self.client.search(
             collection_name=collection_name,
             query_records=vectors,
             top_k=top_k,
             params=search_param)
         if not status.code:
             LOGGER.debug("Successfully search in collection: {}".format(
                 collection_name))
             return result
         else:
             raise Exception(status.message)
     except Exception as e:
         LOGGER.error("Failed to search vectors in Milvus: {}".format(e))
         sys.exit(1)
Exemplo n.º 12
0
async def search_images(image: UploadFile = File(...), table_name: str = None):
    # Search the upload image in Milvus/MySQL
    try:
        # Save the upload image to server.
        content = await image.read()
        print('read pic succ')
        img_path = os.path.join(UPLOAD_PATH, image.filename)
        with open(img_path, "wb+") as f:
            f.write(content)
        paths, distances = do_search(table_name, img_path, MODEL, MILVUS_CLI,
                                     MYSQL_CLI)
        res = dict(zip(paths, distances))
        res = sorted(res.items(), key=lambda item: item[1])
        LOGGER.info("Successfully searched similar images!")
        return res
    except Exception as e:
        LOGGER.error(e)
        return {'status': False, 'msg': e}, 400
Exemplo n.º 13
0
def extract_features(img_dir, model):
    try:
        cache = Cache('./tmp')
        feats = []
        names = []
        img_list = get_imgs(img_dir)
        total = len(img_list)
        cache['total'] = total
        for i, img_path in enumerate(img_list):
            norm_feat = model.resnet50_extract_feat(img_path)
            feats.append(norm_feat)
            names.append(img_path.encode())
            cache['current'] = i + 1
            print("Extracting feature from image No. %d , %d images in total" %
                  (i + 1, total))
        return feats, names
    except Exception as e:
        LOGGER.error(" Error with extracting feature from image {}".format(e))
        sys.exit(1)
Exemplo n.º 14
0
 def search_vectors(self, collection_name, vectors, top_k):
     try:
         self.set_collection(collection_name)
         search_params = {
             "metric_type": METRIC_TYPE,
             "params": {
                 "nprobe": 16
             }
         }
         # data = [vectors]
         res = self.collection.search(vectors,
                                      anns_field="embedding",
                                      param=search_params,
                                      limit=top_k)
         LOGGER.debug("Successfully search in collection: {}".format(res))
         return res
     except Exception as e:
         LOGGER.error("Failed to search vectors in Milvus: {}".format(e))
         sys.exit(1)
Exemplo n.º 15
0
async def do_search_api(table_name: str = None, query_sentence: str = None):
    try:

        ids, results_classes, seq_genes, distances = search_in_milvus(
            table_name, query_sentence, MILVUS_CLI, MYSQL_CLI)
        res = []
        for i, c, s, d in zip(ids, results_classes, seq_genes, distances):
            dicts = {
                'milvus_id': i,
                'seq_class': c,
                'seq_gene': s,
                'IP distance': d
            }
            res += [dicts]
        LOGGER.info("Successfully searched similar sequence!")
        return res
    except Exception as e:
        LOGGER.error(e)
        return {'status': False, 'msg': e}, 400
Exemplo n.º 16
0
async def load_text(file: UploadFile = File(...), table_name: str = None):
    try:
        text = await file.read()
        fname = file.filename
        dirs = "data"
        if not os.path.exists(dirs):
            os.makedirs(dirs)
        fname_path = os.path.join(os.getcwd(), os.path.join(dirs, fname))
        with open(fname_path, 'wb') as f:
            f.write(text)
    except Exception as e:
        return {'status': False, 'msg': 'Failed to load data.'}
    # Insert all the image under the file path to Milvus/MySQL
    try:
        total_num = import_data(table_name, fname_path, MILVUS_CLI, MYSQL_CLI)
        LOGGER.info(
            "Successfully loaded data, total count: {}".format(total_num))
        return "Successfully loaded data!"
    except Exception as e:
        LOGGER.error(e)
        return {'status': False, 'msg': e}, 400
Exemplo n.º 17
0
def search_in_milvus(table_name, query_sentence, milvus_cli, mysql_cli):
    if not table_name:
        table_name = DEFAULT_TABLE
    try:
        kmers = build_kmers(query_sentence,KMER_K)
        query_data = [" ".join(kmers)]
        query_list = encode_seq(query_data)
        LOGGER.info("Searching...")
        results = milvus_cli.search_vectors(table_name,query_list,TOP_K)
        vids = [str(x.id) for x in results[0]]
        print("-----------------", vids)
        ids, results_classes = mysql_cli.search_by_milvus_ids(vids, table_name)
        distances = [x.distance for x in results[0]]
        df_class = pd.read_table(SEQ_CLASS_PATH)
        class_dict = dict()
        for i in range(len(df_class)):
            class_dict[df_class['class'][i]] = df_class['gene_family'][i]
        seq_genes = [class_dict[int(x)] for x in results_classes]
        return ids, results_classes, seq_genes, distances
    except Exception as e:
        LOGGER.error(" Error with search : {}".format(e))
        sys.exit(1)
Exemplo n.º 18
0
def extract_features(video_dir, model, frame):
    try:
        cache = Cache('./tmp')
        feats = []
        names = []
        video_list = get_video(video_dir)
        total = len(video_list)
        cache['total'] = total
        for i, video_path in enumerate(video_list):
            imgs = frame.extract_frame(video_path)
            for img_path in imgs:
                norm_feat = model.resnet50_extract_feat(img_path)
                feats.append(norm_feat)
                names.append(video_path.encode())
            cache['current'] = i + 1
            print(
                "%d video in total, extracting feature from video No. %d , and the video has %d frames."
                % (i + 1, total, len(imgs)))
        return feats, names
    except Exception as e:
        LOGGER.error(" Error with extracting feature from image {}".format(e))
        sys.exit(1)
Exemplo n.º 19
0
 def create_index(self, collection_name):
     try:
         self.set_collection(collection_name)
         default_index = {
             "index_type": "IVF_SQ8",
             "metric_type": METRIC_TYPE,
             "params": {
                 "nlist": 16384
             }
         }
         status = self.collection.create_index(field_name="embedding",
                                               index_params=default_index)
         if not status.code:
             LOGGER.debug(
                 "Successfully create index in collection:{} with param:{}".
                 format(collection_name, default_index))
             return status
         else:
             raise Exception(status.message)
     except Exception as e:
         LOGGER.error("Failed to create index: {}".format(e))
         sys.exit(1)
Exemplo n.º 20
0
async def search_images(request: Request,
                        image: UploadFile = File(...),
                        table_name: str = None):
    # Search the upload image in Milvus/MySQL
    try:
        # Save the upload image to server.
        content = await image.read()
        img_path = os.path.join(UPLOAD_PATH, image.filename)
        with open(img_path, "wb+") as f:
            f.write(content)
        host = request.headers['host']
        paths, distances = do_search(host, table_name, img_path, MODEL,
                                     MILVUS_CLI, MYSQL_CLI)
        res = {}
        for p, d in zip(paths, distances):
            if not p in res or res[p] > d:
                res[p] = d
        res = sorted(res.items(), key=lambda item: item[1])
        LOGGER.info("Successfully searched similar images!")
        return res
    except Exception as e:
        LOGGER.error(e)
        return {'status': False, 'msg': e}, 400
Exemplo n.º 21
0
 def create_collection(self, collection_name):
     try:
         if not self.has_collection(collection_name):
             field1 = FieldSchema(name="id",
                                  dtype=DataType.INT64,
                                  descrition="int64",
                                  is_primary=True,
                                  auto_id=True)
             field2 = FieldSchema(name="embedding",
                                  dtype=DataType.FLOAT_VECTOR,
                                  descrition="float vector",
                                  dim=VECTOR_DIMENSION,
                                  is_primary=False)
             schema = CollectionSchema(fields=[field1, field2],
                                       description="collection description")
             self.collection = Collection(name=collection_name,
                                          schema=schema)
             LOGGER.debug("Create Milvus collection: {}".format(
                 self.collection))
         return "OK"
     except Exception as e:
         LOGGER.error("Failed to load data to Milvus: {}".format(e))
         sys.exit(1)
Exemplo n.º 22
0
async def do_load_api(file: UploadFile = File(...), table_name: str = None):
    try:
        text = await file.read()
        fname = file.filename
        dirs = "QA_data"
        if not os.path.exists(dirs):
            os.makedirs(dirs)
        fname_path = os.path.join(os.getcwd(), os.path.join(dirs, fname))
        with open(fname_path, 'wb') as f:
            f.write(text)
    except Exception as e:
        return {'status': False, 'msg': 'Failed to load data.'}
    try:
        total_num = do_load(table_name, fname_path, MODEL, MILVUS_CLI,
                            MYSQL_CLI)
        LOGGER.info(
            "Successfully loaded data, total count: {}".format(total_num))
        return {
            'status': True,
            'msg': "Successfully loaded data: {}".format(total_num)
        }, 200
    except Exception as e:
        LOGGER.error(e)
        return {'status': False, 'msg': e}, 400
Exemplo n.º 23
0
def do_search(table_name, img_path, model, milvus_client, mysql_cli):
    try:
        if not table_name:
            table_name = DEFAULT_TABLE
        detector = Detector()
        run(detector, img_path)
        vecs = get_object_vector(model, img_path + '/object')
        # feat = model.resnet50_extract_feat(img_path)
        results = milvus_client.search_vectors(table_name, vecs, TOP_K)
        ids = []
        distances = []
        for result in results:
            for j in result:
                ids.append(j.id)
                distances.append(j.distance)
        # res_id = [x for x in query_name_from_ids(vids)]
        # vids = [str(x.id) for x in vectors[0]]
        paths = mysql_cli.search_by_milvus_ids(ids, table_name)
        # distances = [x.distance for x in vectors[0]]
        shutil.rmtree(img_path)
        return paths, distances
    except Exception as e:
        LOGGER.error(" Error with search : {}".format(e))
        sys.exit(1)
Exemplo n.º 24
0
 def has_collection(self, collection_name):
     try:
         return utility.has_collection(collection_name)
     except Exception as e:
         LOGGER.error("Failed to load data to Milvus: {}".format(e))
         sys.exit(1)