Exemplo n.º 1
0
def test_add_nosync():
    orig_knl = lp.make_kernel("{[i]: 0<=i<10}",
        """
        <>tmp[i] = 10 {id=insn1}
        <>tmp2[i] = 10 {id=insn2}

        <>tmp3[2*i] = 0 {id=insn3}
        <>tmp4 = 1 + tmp3[2*i] {id=insn4}

        <>tmp5[i] = 0 {id=insn5,groups=g1}
        tmp5[i] = 1 {id=insn6,conflicts=g1}
        """)

    orig_knl = lp.set_temporary_scope(orig_knl, "tmp3", "local")
    orig_knl = lp.set_temporary_scope(orig_knl, "tmp5", "local")

    # No dependency present - don't add nosync
    knl = lp.add_nosync(orig_knl, "any", "writes:tmp", "writes:tmp2",
            empty_ok=True)
    assert frozenset() == knl.id_to_insn["insn2"].no_sync_with

    # Dependency present
    knl = lp.add_nosync(orig_knl, "local", "writes:tmp3", "reads:tmp3")
    assert frozenset() == knl.id_to_insn["insn3"].no_sync_with
    assert frozenset([("insn3", "local")]) == knl.id_to_insn["insn4"].no_sync_with

    # Bidirectional
    knl = lp.add_nosync(
            orig_knl, "local", "writes:tmp3", "reads:tmp3", bidirectional=True)
    assert frozenset([("insn4", "local")]) == knl.id_to_insn["insn3"].no_sync_with
    assert frozenset([("insn3", "local")]) == knl.id_to_insn["insn4"].no_sync_with

    # Groups
    knl = lp.add_nosync(orig_knl, "local", "insn5", "insn6")
    assert frozenset([("insn5", "local")]) == knl.id_to_insn["insn6"].no_sync_with
Exemplo n.º 2
0
def test_add_nosync():
    orig_knl = lp.make_kernel("{[i]: 0<=i<10}",
        """
        <>tmp[i] = 10 {id=insn1}
        <>tmp2[i] = 10 {id=insn2}

        <>tmp3[2*i] = 0 {id=insn3}
        <>tmp4 = 1 + tmp3[2*i] {id=insn4}

        <>tmp5[i] = 0 {id=insn5,groups=g1}
        tmp5[i] = 1 {id=insn6,conflicts=g1}
        """)

    orig_knl = lp.set_temporary_scope(orig_knl, "tmp3", "local")
    orig_knl = lp.set_temporary_scope(orig_knl, "tmp5", "local")

    # No dependency present - don't add nosync
    knl = lp.add_nosync(orig_knl, "any", "writes:tmp", "writes:tmp2",
            empty_ok=True)
    assert frozenset() == knl.id_to_insn["insn2"].no_sync_with

    # Dependency present
    knl = lp.add_nosync(orig_knl, "local", "writes:tmp3", "reads:tmp3")
    assert frozenset() == knl.id_to_insn["insn3"].no_sync_with
    assert frozenset([("insn3", "local")]) == knl.id_to_insn["insn4"].no_sync_with

    # Bidirectional
    knl = lp.add_nosync(
            orig_knl, "local", "writes:tmp3", "reads:tmp3", bidirectional=True)
    assert frozenset([("insn4", "local")]) == knl.id_to_insn["insn3"].no_sync_with
    assert frozenset([("insn3", "local")]) == knl.id_to_insn["insn4"].no_sync_with

    # Groups
    knl = lp.add_nosync(orig_knl, "local", "insn5", "insn6")
    assert frozenset([("insn5", "local")]) == knl.id_to_insn["insn6"].no_sync_with
Exemplo n.º 3
0
    def finish(self):
        new_instructions = []

        insns_to_insert = dict(
            (insn.id, insn) for insn in self.insns_to_insert)

        for orig_insn in self.kernel.instructions:
            if orig_insn.id in self.insns_to_update:
                new_instructions.append(self.insns_to_update[orig_insn.id])
            else:
                new_instructions.append(orig_insn)
        new_instructions.extend(
            sorted(insns_to_insert.values(), key=lambda insn: insn.id))

        self.updated_iname_to_tag.update(self.kernel.iname_to_tag)
        self.updated_temporary_variables.update(
            self.kernel.temporary_variables)

        new_domains = list(self.kernel.domains)
        import islpy as isl
        if self.new_subdomain.dim(isl.dim_type.set) > 0:
            new_domains.append(self.new_subdomain)

        kernel = self.kernel.copy(
            domains=new_domains,
            instructions=new_instructions,
            iname_to_tag=self.updated_iname_to_tag,
            temporary_variables=self.updated_temporary_variables,
            overridden_get_grid_sizes_for_insn_ids=None)

        # Add nosync directives to any saves or reloads that were added with a
        # potential dependency chain.
        from loopy.kernel.tools import get_subkernels
        for subkernel in get_subkernels(kernel):
            relevant_insns = self.subkernel_to_newly_added_insn_ids[subkernel]

            from itertools import product
            for temporary in self.temporary_to_reload_ids:
                for source, sink in product(
                        relevant_insns
                        & self.temporary_to_reload_ids[temporary],
                        relevant_insns
                        & self.temporary_to_save_ids[temporary]):
                    kernel = lp.add_nosync(kernel, "global", source, sink)

        from loopy.kernel.tools import assign_automatic_axes
        return assign_automatic_axes(kernel)
Exemplo n.º 4
0
    def finish(self):
        new_instructions = []

        insns_to_insert = dict((insn.id, insn) for insn in self.insns_to_insert)

        for orig_insn in self.kernel.instructions:
            if orig_insn.id in self.insns_to_update:
                new_instructions.append(self.insns_to_update[orig_insn.id])
            else:
                new_instructions.append(orig_insn)
        new_instructions.extend(
            sorted(insns_to_insert.values(), key=lambda insn: insn.id))

        self.updated_iname_to_tags.update(self.kernel.iname_to_tags)
        self.updated_temporary_variables.update(self.kernel.temporary_variables)

        new_domains = list(self.kernel.domains)
        import islpy as isl
        if self.new_subdomain.dim(isl.dim_type.set) > 0:
            new_domains.append(self.new_subdomain)

        kernel = self.kernel.copy(
            domains=new_domains,
            instructions=new_instructions,
            iname_to_tags=self.updated_iname_to_tags,
            temporary_variables=self.updated_temporary_variables,
            overridden_get_grid_sizes_for_insn_ids=None)

        # Add nosync directives to any saves or reloads that were added with a
        # potential dependency chain.
        from loopy.kernel.tools import get_subkernels
        for subkernel in get_subkernels(kernel):
            relevant_insns = self.subkernel_to_newly_added_insn_ids[subkernel]

            from itertools import product
            for temporary in self.temporary_to_reload_ids:
                for source, sink in product(
                        relevant_insns & self.temporary_to_reload_ids[temporary],
                        relevant_insns & self.temporary_to_save_ids[temporary]):
                    kernel = lp.add_nosync(kernel, "global", source, sink)

        from loopy.kernel.tools import assign_automatic_axes
        return assign_automatic_axes(kernel)
Exemplo n.º 5
0
def test_gnuma_horiz_kernel(ctx_factory, ilp_multiple, Nq, opt_level):  # noqa
    pytest.importorskip("fparser")
    ctx = ctx_factory()

    filename = os.path.join(os.path.dirname(__file__),
                            "strongVolumeKernels.f90")
    with open(filename) as sourcef:
        source = sourcef.read()

    source = source.replace("datafloat", "real*4")

    program = lp.parse_fortran(source, filename, seq_dependencies=False)

    hsv_r, hsv_s = program["strongVolumeKernelR"], program[
        "strongVolumeKernelS"]

    hsv_r = lp.tag_instructions(hsv_r, "rknl")
    hsv_s = lp.tag_instructions(hsv_s, "sknl")
    hsv = lp.fuse_kernels([hsv_r, hsv_s], ["_r", "_s"])
    #hsv = hsv_s
    hsv = lp.add_nosync(hsv, "any", "writes:rhsQ", "writes:rhsQ", force=True)

    from gnuma_loopy_transforms import (fix_euler_parameters,
                                        set_q_storage_format,
                                        set_D_storage_format)

    hsv = lp.fix_parameters(hsv, Nq=Nq)
    hsv = lp.prioritize_loops(hsv, "e,k,j,i")
    hsv = lp.tag_inames(hsv, dict(e="g.0", j="l.1", i="l.0"))
    hsv = lp.assume(hsv, "elements >= 1")

    hsv = fix_euler_parameters(hsv, p_p0=1, p_Gamma=1.4, p_R=1)
    from loopy.frontend.fortran.translator import specialize_fortran_division
    hsv = specialize_fortran_division(hsv)

    for name in ["Q", "rhsQ"]:
        hsv = set_q_storage_format(hsv, name)

    hsv = set_D_storage_format(hsv)
    #hsv = lp.add_prefetch(hsv, "volumeGeometricFactors")

    ref_hsv = hsv

    if opt_level == 0:
        tap_hsv = hsv

    hsv = lp.add_prefetch(hsv,
                          "D[:,:]",
                          fetch_outer_inames="e",
                          default_tag="l.auto")

    if opt_level == 1:
        tap_hsv = hsv

    # turn the first reads into subst rules
    local_prep_var_names = set()
    for insn in lp.find_instructions(hsv, "tag:local_prep"):
        assignee, = insn.assignee_var_names()
        local_prep_var_names.add(assignee)
        hsv = lp.assignment_to_subst(hsv, assignee)

    # precompute fluxes
    hsv = lp.assignment_to_subst(hsv, "JinvD_r")
    hsv = lp.assignment_to_subst(hsv, "JinvD_s")

    r_fluxes = lp.find_instructions(hsv, "tag:compute_fluxes and tag:rknl")
    s_fluxes = lp.find_instructions(hsv, "tag:compute_fluxes and tag:sknl")

    if ilp_multiple > 1:
        hsv = lp.split_iname(hsv, "k", 2, inner_tag="ilp")
        ilp_inames = ("k_inner", )
        flux_ilp_inames = ("kk", )
    else:
        ilp_inames = ()
        flux_ilp_inames = ()

    rtmps = []
    stmps = []

    flux_store_idx = 0

    for rflux_insn, sflux_insn in zip(r_fluxes, s_fluxes):
        for knl_tag, insn, flux_inames, tmps, flux_precomp_inames in [
            ("rknl", rflux_insn, (
                "j",
                "n",
            ), rtmps, (
                "jj",
                "ii",
            )),
            ("sknl", sflux_insn, (
                "i",
                "n",
            ), stmps, (
                "ii",
                "jj",
            )),
        ]:
            flux_var, = insn.assignee_var_names()
            print(insn)

            reader, = lp.find_instructions(
                hsv,
                "tag:{knl_tag} and reads:{flux_var}".format(knl_tag=knl_tag,
                                                            flux_var=flux_var))

            hsv = lp.assignment_to_subst(hsv, flux_var)

            flux_store_name = "flux_store_%d" % flux_store_idx
            flux_store_idx += 1
            tmps.append(flux_store_name)

            hsv = lp.precompute(hsv,
                                flux_var + "_subst",
                                flux_inames + ilp_inames,
                                temporary_name=flux_store_name,
                                precompute_inames=flux_precomp_inames +
                                flux_ilp_inames,
                                default_tag=None)
            if flux_var.endswith("_s"):
                hsv = lp.tag_array_axes(hsv, flux_store_name, "N0,N1,N2?")
            else:
                hsv = lp.tag_array_axes(hsv, flux_store_name, "N1,N0,N2?")

            n_iname = "n_" + flux_var.replace("_r", "").replace("_s", "")
            if n_iname.endswith("_0"):
                n_iname = n_iname[:-2]
            hsv = lp.rename_iname(hsv,
                                  "n",
                                  n_iname,
                                  within="id:" + reader.id,
                                  existing_ok=True)

    hsv = lp.tag_inames(hsv, dict(ii="l.0", jj="l.1"))
    for iname in flux_ilp_inames:
        hsv = lp.tag_inames(hsv, {iname: "ilp"})

    hsv = lp.alias_temporaries(hsv, rtmps)
    hsv = lp.alias_temporaries(hsv, stmps)

    if opt_level == 2:
        tap_hsv = hsv

    for prep_var_name in local_prep_var_names:
        if prep_var_name.startswith("Jinv") or "_s" in prep_var_name:
            continue
        hsv = lp.precompute(hsv,
                            lp.find_one_rule_matching(
                                hsv, prep_var_name + "_*subst*"),
                            default_tag="l.auto")

    if opt_level == 3:
        tap_hsv = hsv

    hsv = lp.add_prefetch(hsv,
                          "Q[ii,jj,k,:,:,e]",
                          sweep_inames=ilp_inames,
                          default_tag="l.auto")

    if opt_level == 4:
        tap_hsv = hsv
        tap_hsv = lp.tag_inames(
            tap_hsv, dict(Q_dim_field_inner="unr", Q_dim_field_outer="unr"))

    hsv = lp.buffer_array(hsv,
                          "rhsQ",
                          ilp_inames,
                          fetch_bounding_box=True,
                          default_tag="for",
                          init_expression="0",
                          store_expression="base + buffer")

    if opt_level == 5:
        tap_hsv = hsv
        tap_hsv = lp.tag_inames(
            tap_hsv,
            dict(rhsQ_init_field_inner="unr",
                 rhsQ_store_field_inner="unr",
                 rhsQ_init_field_outer="unr",
                 rhsQ_store_field_outer="unr",
                 Q_dim_field_inner="unr",
                 Q_dim_field_outer="unr"))

    # buffer axes need to be vectorized in order for this to work
    hsv = lp.tag_array_axes(hsv, "rhsQ_buf", "c?,vec,c")
    hsv = lp.tag_array_axes(hsv, "Q_fetch", "c?,vec,c")
    hsv = lp.tag_array_axes(hsv, "D_fetch", "f,f")
    hsv = lp.tag_inames(hsv, {
        "Q_dim_k": "unr",
        "rhsQ_init_k": "unr",
        "rhsQ_store_k": "unr"
    },
                        ignore_nonexistent=True)

    if opt_level == 6:
        tap_hsv = hsv
        tap_hsv = lp.tag_inames(
            tap_hsv,
            dict(rhsQ_init_field_inner="unr",
                 rhsQ_store_field_inner="unr",
                 rhsQ_init_field_outer="unr",
                 rhsQ_store_field_outer="unr",
                 Q_dim_field_inner="unr",
                 Q_dim_field_outer="unr"))

    hsv = lp.tag_inames(
        hsv,
        dict(rhsQ_init_field_inner="vec",
             rhsQ_store_field_inner="vec",
             rhsQ_init_field_outer="unr",
             rhsQ_store_field_outer="unr",
             Q_dim_field_inner="vec",
             Q_dim_field_outer="unr"))

    if opt_level == 7:
        tap_hsv = hsv

    hsv = lp.collect_common_factors_on_increment(
        hsv, "rhsQ_buf", vary_by_axes=(0, ) if ilp_multiple > 1 else ())

    if opt_level >= 8:
        tap_hsv = hsv

    hsv = tap_hsv

    hsv = lp.set_options(hsv,
                         cl_build_options=[
                             "-cl-denorms-are-zero", "-cl-fast-relaxed-math",
                             "-cl-finite-math-only", "-cl-mad-enable",
                             "-cl-no-signed-zeros"
                         ])

    if 1:
        print("OPS")
        op_map = lp.get_op_map(hsv, subgroup_size=32)
        print(lp.stringify_stats_mapping(op_map))

        print("MEM")
        gmem_map = lp.get_mem_access_map(hsv, subgroup_size=32).to_bytes()
        print(lp.stringify_stats_mapping(gmem_map))

    # FIXME: renaming's a bit tricky in this program model.
    # add a simple transformation for it
    # hsv = hsv.copy(name="horizontalStrongVolumeKernel")

    results = lp.auto_test_vs_ref(ref_hsv,
                                  ctx,
                                  hsv,
                                  parameters=dict(elements=300),
                                  quiet=True)

    elapsed = results["elapsed_wall"]

    print("elapsed", elapsed)
Exemplo n.º 6
0
    def __call__(self, ary):
        from meshmode.dof_array import DOFArray
        if not isinstance(ary, DOFArray):
            raise TypeError("non-array passed to discretization connection")

        actx = ary.array_context

        @memoize_in(actx, (
            DirectDiscretizationConnection,
            "resample_by_mat_knl",
            self.is_surjective,
        ))
        def mat_knl():
            if self.is_surjective:
                domains = [
                    """
                        {[iel, idof, j]:
                        0<=iel<nelements and
                        0<=idof<n_to_nodes and
                        0<=j<n_from_nodes}
                        """,
                ]

                instructions = """
                result[to_element_indices[iel], idof] \
                        = sum(j, resample_mat[idof, j] \
                        * ary[from_element_indices[iel], j])
                        """
            else:
                domains = [
                    """
                        {[iel_init, idof_init]:
                        0<=iel_init<nelements_result and
                        0<=idof_init<n_to_nodes}
                        """,
                    """
                        {[iel, idof, j]:
                        0<=iel<nelements and
                        0<=idof<n_to_nodes and
                        0<=j<n_from_nodes}
                        """,
                ]

                instructions = """
                result[iel_init, idof_init] = 0 {id=init}
                ... gbarrier {id=barrier, dep=init}
                result[to_element_indices[iel], idof] \
                        = sum(j, resample_mat[idof, j] \
                        * ary[from_element_indices[iel], j]) {dep=barrier}
                        """
            knl = make_loopy_program(
                domains,
                instructions, [
                    lp.GlobalArg("result",
                                 None,
                                 shape="nelements_result, n_to_nodes",
                                 offset=lp.auto),
                    lp.GlobalArg("ary",
                                 None,
                                 shape="nelements_vec, n_from_nodes",
                                 offset=lp.auto),
                    lp.ValueArg("nelements_result", np.int32),
                    lp.ValueArg("nelements_vec", np.int32),
                    lp.ValueArg("n_from_nodes", np.int32),
                    "...",
                ],
                name="resample_by_mat")

            return knl

        @memoize_in(actx, (DirectDiscretizationConnection,
                           "resample_by_picking_knl", self.is_surjective))
        def pick_knl():
            if self.is_surjective:
                domains = [
                    """{[iel, idof]:
                        0<=iel<nelements and
                        0<=idof<n_to_nodes}"""
                ]
                instructions = """
                result[to_element_indices[iel], idof] \
                    = ary[from_element_indices[iel], pick_list[idof]]
                """
            else:
                domains = [
                    """
                        {[iel_init, idof_init]:
                        0<=iel_init<nelements_result and
                        0<=idof_init<n_to_nodes}
                        """, """
                        {[iel, idof]:
                        0<=iel<nelements and
                        0<=idof<n_to_nodes}
                        """
                ]
                instructions = """
                result[iel_init, idof_init] = 0 {id=init}
                ... gbarrier {id=barrier, dep=init}
                result[to_element_indices[iel], idof] \
                    = ary[from_element_indices[iel], pick_list[idof]] {dep=barrier}
                """
            knl = make_loopy_program(
                domains,
                instructions, [
                    lp.GlobalArg("result",
                                 None,
                                 shape="nelements_result, n_to_nodes",
                                 offset=lp.auto),
                    lp.GlobalArg("ary",
                                 None,
                                 shape="nelements_vec, n_from_nodes",
                                 offset=lp.auto),
                    lp.ValueArg("nelements_result", np.int32),
                    lp.ValueArg("nelements_vec", np.int32),
                    lp.ValueArg("n_from_nodes", np.int32),
                    "...",
                ],
                name="resample_by_picking")

            return knl

        if ary.shape != (len(self.from_discr.groups), ):
            raise ValueError("invalid shape of incoming resampling data")

        group_idx_to_result = []

        for i_tgrp, (tgrp,
                     cgrp) in enumerate(zip(self.to_discr.groups,
                                            self.groups)):

            kernels = []  # get kernels for each batch; to be fused eventually
            kwargs = {}  # kwargs to the fused kernel
            for i_batch, batch in enumerate(cgrp.batches):
                if batch.from_element_indices.size == 0:
                    continue

                point_pick_indices = self._resample_point_pick_indices(
                    actx, i_tgrp, i_batch)

                if point_pick_indices is None:
                    knl = mat_knl()
                    knl = lp.rename_argument(knl, "resample_mat",
                                             f"resample_mat_{i_batch}")
                    kwargs[f"resample_mat_{i_batch}"] = (self._resample_matrix(
                        actx, i_tgrp, i_batch))
                else:
                    knl = pick_knl()
                    knl = lp.rename_argument(knl, "pick_list",
                                             f"pick_list_{i_batch}")
                    kwargs[f"pick_list_{i_batch}"] = point_pick_indices

                # {{{ enforce different namespaces for the kernels

                for iname in knl.all_inames():
                    knl = lp.rename_iname(knl, iname, f"{iname}_{i_batch}")

                knl = lp.rename_argument(knl, "ary", f"ary_{i_batch}")
                knl = lp.rename_argument(knl, "from_element_indices",
                                         f"from_element_indices_{i_batch}")
                knl = lp.rename_argument(knl, "to_element_indices",
                                         f"to_element_indices_{i_batch}")
                knl = lp.rename_argument(knl, "nelements",
                                         f"nelements_{i_batch}")

                # }}}

                kwargs[f"ary_{i_batch}"] = ary[batch.from_group_index]
                kwargs[f"from_element_indices_{i_batch}"] = (
                    batch.from_element_indices)
                kwargs[f"to_element_indices_{i_batch}"] = (
                    batch.to_element_indices)

                kernels.append(knl)

            fused_knl = lp.fuse_kernels(kernels)
            # order of operations doesn't matter
            fused_knl = lp.add_nosync(fused_knl,
                                      "global",
                                      "writes:result",
                                      "writes:result",
                                      bidirectional=True,
                                      force=True)

            result_dict = actx.call_loopy(fused_knl,
                                          nelements_result=tgrp.nelements,
                                          n_to_nodes=tgrp.nunit_dofs,
                                          **kwargs)

            group_idx_to_result.append(result_dict["result"])

        from meshmode.dof_array import DOFArray
        return DOFArray.from_list(actx, group_idx_to_result)
Exemplo n.º 7
0
def test_write_block_matrix_fusion(ctx_factory):
    """
    A slightly more complicated fusion test, where all
    sub-kernels write into the same global matrix, but
    in well-defined separate blocks. This tests makes sure
    data flow specification is preserved during fusion for
    matrix-assembly-like programs.
    """

    ctx = ctx_factory()
    queue = cl.CommandQueue(ctx)

    def init_global_mat_prg():
        return lp.make_kernel(
            ["{[idof]: 0 <= idof < n}", "{[jdof]: 0 <= jdof < m}"],
            """
                result[idof, jdof]  = 0 {id=init}
            """,
            [
                lp.GlobalArg("result", None, shape="n, m", offset=lp.auto),
                lp.ValueArg("n, m", np.int32),
                "...",
            ],
            options=lp.Options(return_dict=True),
            default_offset=lp.auto,
            name="init_a_global_matrix",
        )

    def write_into_mat_prg():
        return lp.make_kernel(
            ["{[idof]: 0 <= idof < ndofs}", "{[jdof]: 0 <= jdof < mdofs}"],
            """
                result[offset_i + idof, offset_j + jdof] = mat[idof, jdof]
            """,
            [
                lp.GlobalArg("result", None, shape="n, m", offset=lp.auto),
                lp.ValueArg("n, m", np.int32),
                lp.GlobalArg("mat", None, shape="ndofs, mdofs",
                             offset=lp.auto),
                lp.ValueArg("offset_i", np.int32),
                lp.ValueArg("offset_j", np.int32),
                "...",
            ],
            options=lp.Options(return_dict=True),
            default_offset=lp.auto,
            name="write_into_global_matrix",
        )

    # Construct a 2x2 diagonal matrix with
    # random 5x5 blocks on the block-diagonal,
    # and zeros elsewhere
    n = 10
    block_n = 5
    mat1 = np.random.randn(block_n, block_n)
    mat2 = np.random.randn(block_n, block_n)
    answer = np.block([[mat1, np.zeros((block_n, block_n))],
                       [np.zeros((block_n, block_n)), mat2]])
    kwargs = {"n": n, "m": n}

    # Do some renaming of individual programs before fusion
    kernels = [init_global_mat_prg()]
    for idx, (offset, mat) in enumerate([(0, mat1), (block_n, mat2)]):
        knl = lp.rename_argument(write_into_mat_prg(), "mat", f"mat_{idx}")
        kwargs[f"mat_{idx}"] = mat

        for iname in knl.default_entrypoint.all_inames():
            knl = lp.rename_iname(knl, iname, f"{iname}_{idx}")

        knl = lp.rename_argument(knl, "ndofs", f"ndofs_{idx}")
        knl = lp.rename_argument(knl, "mdofs", f"mdofs_{idx}")
        kwargs[f"ndofs_{idx}"] = block_n
        kwargs[f"mdofs_{idx}"] = block_n

        knl = lp.rename_argument(knl, "offset_i", f"offset_i_{idx}")
        knl = lp.rename_argument(knl, "offset_j", f"offset_j_{idx}")
        kwargs[f"offset_i_{idx}"] = offset
        kwargs[f"offset_j_{idx}"] = offset

        kernels.append(knl)

    fused_knl = lp.fuse_kernels(
        kernels,
        data_flow=[("result", 0, 1), ("result", 1, 2)],
    )
    fused_knl = lp.add_nosync(fused_knl,
                              "global",
                              "writes:result",
                              "writes:result",
                              bidirectional=True,
                              force=True)
    evt, result = fused_knl(queue, **kwargs)
    result = result["result"]
    np.testing.assert_allclose(result, answer)