Exemplo n.º 1
0
    def search(self):
        game = self.game
        parent = self.root
        while not parent.is_leaf_node():
            best_puct = None
            for child in parent.children:
                curr_puct = self.PUCT(parent, child)
                if (best_puct == None or curr_puct >= best_puct):
                    best_child = child
                    best_puct = curr_puct
            self.level += 1
            parent = best_child
            self.game.execute_move(best_child.last_action)

        raw_pred = self.agent.predict(np.array([game.get_board()]))
        result = loss.softmax(np.array(game.get_legal_NN_output()),
                              raw_pred[0])

        if not self.game.is_final():
            valid_moves = game.get_moves()
            for move in valid_moves:
                Node(game, parent, move, result[0][move])
            self.back_propagate(parent, raw_pred[1][0][0])
            self.level = 0
        else:
            self.back_propagate(parent, raw_pred[1][0][0])
            self.level = 0
Exemplo n.º 2
0
    def _evaluate(self, result, epsilon=0.000001):
        # return 0, {str(act): 1 / len(self.game.get_moves()) for num, act in enumerate(self.game.get_moves())}
        # return random.uniform(-1, 1), {str(act): random.random() for num, act in enumerate(self.game.get_moves())}

        # state = state.reshape(self.NN_input_dim)
        policy, value = result

        policy = policy.flatten()

        legal_moves = np.array(self.game.get_legal_NN_output())
        num_legal_moves = np.sum(legal_moves)

        policy_norm = loss.softmax(legal_moves, policy)

        policy_norm = (policy_norm + epsilon) * legal_moves
        outp = self.NN_output_to_moves_func(policy_norm)
        policy_norm = policy_norm[policy_norm > 0]

        if len(self.state_visits) == 0 and self.dirichlet_noise:
            noise = np.random.dirichlet(np.array([self.alpha for _ in range(num_legal_moves)]), (1))
            noise = noise.reshape(noise.shape[1])
            # print("Adding noise", policy_norm)
            return value, {str(act): (1 - self.epsilon) * policy_norm[num] + self.epsilon * noise[num] for num, act in
                           enumerate(outp)}
        else:
            # print("No noise", policy_norm)
            return value, {str(act): policy_norm[num] for num, act in enumerate(outp)}
Exemplo n.º 3
0
def perplexity(input_data):
    from loss import softmax
    N, T, V = input_data.shape
    p = 1
    for i in range(N):
        p *= softmax(input_data[i])
    return pow(1 / p, 1 / N) / N
Exemplo n.º 4
0
def train(game,
          config,
          num_filters,
          num_res_blocks,
          num_sim=125,
          epochs=50,
          games_each_epoch=10,
          batch_size=32,
          num_train_epochs=10):
    h, w, d = config.board_dims[1:]
    agent = ResNet.ResNet.build(h,
                                w,
                                d,
                                num_filters,
                                config.policy_output_dim,
                                num_res_blocks=num_res_blocks)
    agent.compile(
        loss=[softmax_cross_entropy_with_logits, 'mean_squared_error'],
        optimizer=SGD(lr=0.001, momentum=0.9))
    agent.summary()

    for epoch in range(epochs):
        x, y_pol, y_val = generate_data(game,
                                        agent,
                                        config,
                                        num_sim=num_sim,
                                        games=games_each_epoch)
        print("Epoch")
        print(x.shape)
        raw = agent.predict(x)
        for num in range(len(x)):
            print("targets-predictions")
            print(y_pol[num], y_val[num])
            print(softmax(y_pol[num], raw[0][num]), raw[1][num])

        agent.fit(x=x,
                  y=[y_pol, y_val],
                  batch_size=min(batch_size, len(x)),
                  epochs=num_train_epochs,
                  callbacks=[])
        agent.save_weights("Models/" + Config.name + "/" + str(epoch) + ".h5")
    return agent
Exemplo n.º 5
0
 def get_prior_probabilities(self, board_state):
     pred = self.agent.predict(board_state)
     return loss.softmax(np.array(self.game.get_legal_NN_output()),
                         pred[0]), pred[1]
Exemplo n.º 6
0
def main():
    """Create the model and start the evaluation process."""
    args = get_arguments()

    gpu0 = args.gpu

    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    save_part_dir = os.path.join(args.save_dir, 'part_map')
    if not os.path.exists(save_part_dir):
        os.makedirs(save_part_dir)

    save_overlay_dir = os.path.join(args.save_dir, 'part_overlay')
    if not os.path.exists(save_overlay_dir):
        os.makedirs(save_overlay_dir)

    save_part_dcrf_dir = os.path.join(args.save_dir, 'part_map_dcrf')
    if not os.path.exists(save_part_dcrf_dir):
        os.makedirs(save_part_dcrf_dir)

    save_dcrf_overlay_dir = os.path.join(args.save_dir, 'part_dcrf_overlay')
    if not os.path.exists(save_dcrf_overlay_dir):
        os.makedirs(save_dcrf_overlay_dir)

    save_lm_dir = os.path.join(args.save_dir, 'landmarks')
    if not os.path.exists(save_lm_dir):
        os.makedirs(save_lm_dir)

    save_seg_dir = os.path.join(args.save_dir, 'seg')
    if not os.path.exists(save_seg_dir):
        os.makedirs(save_seg_dir)

    save_prob_dir = os.path.join(args.save_dir, 'prob')
    if not os.path.exists(save_prob_dir):
        os.makedirs(save_prob_dir)

    save_dcrf_prob_dir = os.path.join(args.save_dir, 'dcrf_prob')
    if not os.path.exists(save_dcrf_prob_dir):
        os.makedirs(save_dcrf_prob_dir)

    # create network
    model = model_generator(args)
    #model.load_state_dict(torch.load("snapshots_CelebA/SCOPS_K8_retrain/model_100000.pth"))
    model.load_state_dict(torch.load(args.restore_from))

    model.eval()
    model.cuda(gpu0)

    if args.dataset == 'CelebAWild':
        from dataset.celeba_wild_dataset import CelebAWildDataset
        dataset = CelebAWildDataset
        testloader = data.DataLoader(dataset(args.data_dir,
                                             args.data_list,
                                             crop_size=input_size,
                                             scale=False,
                                             mirror=False,
                                             mean=IMG_MEAN,
                                             center_crop=False,
                                             ignore_saliency_fg=False,
                                             iou_threshold=0.3),
                                     batch_size=1,
                                     shuffle=False,
                                     pin_memory=True)
    elif args.dataset == 'cub':
        from dataset import cub
        args.batch_size = 1
        testloader = cub.data_loader(args)
    elif args.dataset == 'ImageNet':
        from dataset import imagenet as imnet_data
        args.batch_size = 1
        testloader = imnet_data.imnet_dataloader(args)
    elif args.dataset == 'p3d':
        from dataset import p3d as p3d_data
        args.batch_size = 1
        testloader = p3d_data.p3d_dataloader(args)
    else:
        print('Not supported dataset {}'.format(args.dataset))

    interp = nn.Upsample(size=input_size, mode='bilinear', align_corners=True)
    colorize = utils.Colorize(args.num_parts + 1)
    N = len(testloader)

    landmarks = np.zeros((N, args.num_parts, 2))
    #landmarks_gt = np.zeros((N,args.lm_count,2))

    with torch.no_grad():
        for index, batch in enumerate(testloader):
            """
            import pickle
            with open("/xtli-correspondence/Data/trim/bboxes.npy", 'rb') as f:
                bboxes = pickle.load(f)
            bbox = np.squeeze(bboxes[0])
            fpath = "/xtli-correspondence/Data/trim/output_00001.jpg"
            fpath = "/xtli-correspondence/CUB_200_2011/images/001.Black_footed_Albatross/Black_Footed_Albatross_0039_796132.jpg"
            bbox = np.array([122, 128, 481, 379])
            img = read_frame(fpath, bbox)
            batch = {}
            batch['img'] = img
            """
            if index % 100 == 0:
                path_split = args.save_dir.split('/')
                print('{} processd: {}/{}'.format(index, path_split[-4],
                                                  path_split[-3]))
            image = batch['img']
            #label = batch['mask']
            img_path = batch['img_path']
            tmp = img_path[0].split("/")
            img_folder = tmp[4]
            img_nm = tmp[5].replace(".jpg", ".png")

            size = input_size
            output = model(image.cuda(gpu0))
            output_raw = interp(output[2])
            #permute = [0, 1, 4, 3, 2]
            #import pdb; pdb.set_trace()
            #output_raw = output_raw[:, permute, :, :]

            lms = Batch_Get_Centers(output_raw)
            landmarks[index, :, :] = lms

            if args.save_viz:
                mean_tensor = torch.tensor(IMG_MEAN).float().expand(
                    int(size[1]), int(size[0]), 3).transpose(0, 2)
                imgs_viz = torch.clamp(image + mean_tensor, 0.0, 255.0)
                #landmark visualization
                lms_viz = Batch_Draw_GT_Landmarks(imgs_viz, output_raw, lms)

                output = softmax(output_raw)
                # normalize part
                output /= output.max(dim=3,
                                     keepdim=True)[0].max(dim=2,
                                                          keepdim=True)[0]
                output[:, 0, :, :] = 0.1

                output = output.cpu().data[0].numpy()

                #output = output[:,:size[0],:size[1]]
                #gt = np.asarray(label[0].numpy()[:size[0],:size[1]], dtype=np.int)

                output_np = output.transpose(1, 2, 0)
                output_np = np.asarray(np.argmax(output_np, axis=2),
                                       dtype=np.int)

                filename = os.path.join(
                    save_prob_dir, '{}/{}'.format(img_folder,
                                                  img_nm.replace("png",
                                                                 "pth")))
                file_dir = os.path.dirname(filename)
                if not os.path.exists(file_dir):
                    os.makedirs(file_dir)

                #save probility map before softmax
                torch.save(output_raw.cpu(), filename)

                #Image.fromarray(output_np, 'P').save(filename)
                filename = os.path.join(save_seg_dir,
                                        '{}/{}'.format(img_folder, img_nm))
                file_dir = os.path.dirname(filename)
                if not os.path.exists(file_dir):
                    os.makedirs(file_dir)
                pil_image = Image.fromarray(output_np.astype(dtype=np.uint8))
                pil_image.save(filename, 'PNG')

                seg_viz = colorize(output_np)
                filename = os.path.join(save_part_dir,
                                        '{}/{}'.format(img_folder, img_nm))
                file_dir = os.path.dirname(filename)
                if not os.path.exists(file_dir):
                    os.makedirs(file_dir)

                Image.fromarray(seg_viz.squeeze().transpose(1, 2, 0),
                                'RGB').save(filename)

                seg_overlay_viz = (imgs_viz.numpy() * 0.8 +
                                   seg_viz * 0.7).clip(0,
                                                       255.0).astype(np.uint8)
                filename = os.path.join(save_overlay_dir,
                                        '{}/{}'.format(img_folder, img_nm))
                file_dir = os.path.dirname(filename)
                if not os.path.exists(file_dir):
                    os.makedirs(file_dir)

                Image.fromarray(seg_overlay_viz.squeeze().transpose(1, 2, 0),
                                'RGB').save(filename)

                if args.crf:
                    output_dcrf_prob = utils.denseCRF(
                        imgs_viz.numpy().squeeze().transpose(1, 2, 0).astype(
                            np.uint8).copy(), output)

                    filename = os.path.join(
                        save_dcrf_prob_dir, '{}/{}'.format(
                            img_folder,
                            img_nm.replace(".png",
                                           ".npy").replace(".JPEG", ".npy")))
                    file_dir = os.path.dirname(filename)
                    if not os.path.exists(file_dir):
                        os.makedirs(file_dir)
                    np.save(filename, output_dcrf_prob)

                    output_dcrf = np.asarray(np.argmax(output_dcrf_prob,
                                                       axis=2),
                                             dtype=np.int)
                    seg_dcrf_viz = colorize(output_dcrf)

                    filename = os.path.join(save_part_dcrf_dir,
                                            '{}/{}'.format(img_folder, img_nm))
                    file_dir = os.path.dirname(filename)
                    if not os.path.exists(file_dir):
                        os.makedirs(file_dir)
                    Image.fromarray(seg_dcrf_viz.squeeze().transpose(1, 2, 0),
                                    'RGB').save(filename)

                    seg_dcrf_overlay_viz = (imgs_viz.numpy() * 0.8 +
                                            seg_dcrf_viz * 0.7).clip(
                                                0, 255.0).astype(np.uint8)
                    filename = os.path.join(save_dcrf_overlay_dir,
                                            '{}/{}'.format(img_folder, img_nm))
                    file_dir = os.path.dirname(filename)
                    if not os.path.exists(file_dir):
                        os.makedirs(file_dir)
                    Image.fromarray(
                        seg_dcrf_overlay_viz.squeeze().transpose(1, 2, 0),
                        'RGB').save(filename)

                filename_lm = os.path.join(save_lm_dir,
                                           '{}/{}'.format(img_folder, img_nm))
                file_dir = os.path.dirname(filename_lm)
                if not os.path.exists(file_dir):
                    os.makedirs(file_dir)
                Image.fromarray(lms_viz[0, :, :, :].transpose(1, 2, 0),
                                'RGB').save(filename_lm)
Exemplo n.º 7
0
 def predict(self, X):
     X = self.forward(X)
     return np.argmax(softmax(X), axis=1)
Exemplo n.º 8
0
# print(img_load)
# print(label_load)

#----------------------------------------------------------------

w_out = np.ones((784, 10))

z_1 = np.dot(layer_img.T, w_1).T + b_1
a_1 = activation.relu(z_1)

z_2 = np.dot(a_1.T, w_2).T + b_2
a_2 = activation.relu(z_2)

z_3 = np.dot(a_2.T, w_3).T + b_3
a_3 = activation.relu(z_3)

z_out = np.dot(a_3.T, w_out).T
output = loss.softmax(z_out)

t = loss.crossEntropy(output, label)

dw_3 = np.dot(a_2, (a_3 - label).T)
print(dw_3)

# # show image debugging
# img_load = np.reshape(unpack(len(bin_img)*'B',bin_img),(28,28))
# label_load = int.from_bytes(bin_label,byteorder='big',signed=False)
# plt.imshow(img_load,cmap=cm.binary)
# plt.show()
# print(img_load)
# print(label_load)
Exemplo n.º 9
0
def main():
    """Create the model and start the evaluation process."""
    args = get_arguments()

    gpu0 = args.gpu

    h, w = map(int, args.input_size.split(','))
    input_size = (h, w)

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    save_part_dir = os.path.join(args.save_dir, 'part_map')
    if not os.path.exists(save_part_dir):
        os.makedirs(save_part_dir)

    save_overlay_dir = os.path.join(args.save_dir, 'part_overlay')
    if not os.path.exists(save_overlay_dir):
        os.makedirs(save_overlay_dir)

    save_part_dcrf_dir = os.path.join(args.save_dir, 'part_map_dcrf')
    if not os.path.exists(save_part_dcrf_dir):
        os.makedirs(save_part_dcrf_dir)

    save_dcrf_overlay_dir = os.path.join(args.save_dir, 'part_dcrf_overlay')
    if not os.path.exists(save_dcrf_overlay_dir):
        os.makedirs(save_dcrf_overlay_dir)

    save_lm_dir = os.path.join(args.save_dir, 'landmarks')
    if not os.path.exists(save_lm_dir):
        os.makedirs(save_lm_dir)

    save_seg_dir = os.path.join(args.save_dir, 'seg')
    if not os.path.exists(save_seg_dir):
        os.makedirs(save_seg_dir)

    # create network
    model = model_generator(args)

    model.eval()
    model.cuda(gpu0)

    if args.dataset == 'CelebAWild':
        from dataset.celeba_wild_dataset import CelebAWildDataset
        dataset = CelebAWildDataset
        testloader = data.DataLoader(dataset(args.data_dir,
                                             args.data_list,
                                             crop_size=input_size,
                                             scale=False,
                                             mirror=False,
                                             mean=IMG_MEAN,
                                             center_crop=False,
                                             ignore_saliency_fg=False,
                                             iou_threshold=0.3),
                                     batch_size=1,
                                     shuffle=False,
                                     pin_memory=True)
    else:
        print('Not supported dataset {}'.format(args.dataset))

    interp = nn.Upsample(size=input_size, mode='bilinear', align_corners=True)
    colorize = utils.Colorize(args.num_parts + 1)
    N = len(testloader)

    landmarks = np.zeros((N, args.num_parts, 2))
    landmarks_gt = np.zeros((N, args.lm_count, 2))

    with torch.no_grad():
        for index, batch in enumerate(testloader):
            if index % 100 == 0:
                path_split = args.save_dir.split('/')
                print('{} processd: {}/{}'.format(index, path_split[-4],
                                                  path_split[-3]))
            image = batch['img']
            label = batch['saliency']
            size_org = batch['size']
            name = batch['name']
            landmarks_gt[index, :, :] = batch['landmarks']

            size = input_size
            output = model(image.cuda(gpu0))
            output = interp(output[2])

            lms = Batch_Get_Centers(output)
            landmarks[index, :, :] = lms

            if args.save_viz:
                mean_tensor = torch.tensor(IMG_MEAN).float().expand(
                    int(size[1]), int(size[0]), 3).transpose(0, 2)
                imgs_viz = torch.clamp(image + mean_tensor, 0.0, 255.0)
                #landmark visualization
                lms_viz = Batch_Draw_GT_Landmarks(imgs_viz, output, lms)

                output = softmax(output)
                # normalize part
                output /= output.max(dim=3,
                                     keepdim=True)[0].max(dim=2,
                                                          keepdim=True)[0]
                output[:, 0, :, :] = 0.1

                output = output.cpu().data[0].numpy()

                output = output[:, :size[0], :size[1]]
                gt = np.asarray(label[0].numpy()[:size[0], :size[1]],
                                dtype=np.int)

                output_np = output.transpose(1, 2, 0)
                output_np = np.asarray(np.argmax(output_np, axis=2),
                                       dtype=np.int)

                filename = os.path.join(save_seg_dir,
                                        '{}.png'.format(name[0][:-4]))
                file_dir = os.path.dirname(filename)
                if not os.path.exists(file_dir):
                    os.makedirs(file_dir)

                Image.fromarray(output_np, 'P').save(filename)

                seg_viz = colorize(output_np)
                filename = os.path.join(save_part_dir,
                                        '{}.png'.format(name[0][:-4]))
                file_dir = os.path.dirname(filename)
                if not os.path.exists(file_dir):
                    os.makedirs(file_dir)

                Image.fromarray(seg_viz.squeeze().transpose(1, 2, 0),
                                'RGB').save(filename)

                seg_overlay_viz = (imgs_viz.numpy() * 0.8 +
                                   seg_viz * 0.7).clip(0,
                                                       255.0).astype(np.uint8)
                filename = os.path.join(save_overlay_dir,
                                        '{}.png'.format(name[0][:-4]))
                file_dir = os.path.dirname(filename)
                if not os.path.exists(file_dir):
                    os.makedirs(file_dir)

                Image.fromarray(seg_overlay_viz.squeeze().transpose(1, 2, 0),
                                'RGB').save(filename)

                if args.crf:
                    output_dcrf = utils.denseCRF(
                        imgs_viz.numpy().squeeze().transpose(1, 2, 0).astype(
                            np.uint8).copy(), output)
                    output_dcrf = np.asarray(np.argmax(output_dcrf, axis=2),
                                             dtype=np.int)
                    seg_dcrf_viz = colorize(output_dcrf)

                    filename = os.path.join(save_part_dcrf_dir,
                                            '{}.png'.format(name[0][:-4]))
                    file_dir = os.path.dirname(filename)
                    if not os.path.exists(file_dir):
                        os.makedirs(file_dir)
                    Image.fromarray(seg_dcrf_viz.squeeze().transpose(1, 2, 0),
                                    'RGB').save(filename)

                    seg_dcrf_overlay_viz = (imgs_viz.numpy() * 0.8 +
                                            seg_dcrf_viz * 0.7).clip(
                                                0, 255.0).astype(np.uint8)
                    filename = os.path.join(save_dcrf_overlay_dir,
                                            '{}.png'.format(name[0][:-4]))
                    file_dir = os.path.dirname(filename)
                    if not os.path.exists(file_dir):
                        os.makedirs(file_dir)
                    Image.fromarray(
                        seg_dcrf_overlay_viz.squeeze().transpose(1, 2, 0),
                        'RGB').save(filename)

                filename_lm = os.path.join(save_lm_dir,
                                           '{}.png'.format(name[0][:-4]))
                file_dir = os.path.dirname(filename_lm)
                if not os.path.exists(file_dir):
                    os.makedirs(file_dir)
                Image.fromarray(lms_viz[0, :, :, :].transpose(1, 2, 0),
                                'RGB').save(filename_lm)

    np.save(os.path.join(args.save_dir, 'pred_kp.npy'), landmarks)
    np.save(os.path.join(args.save_dir, 'gt_kp.npy'), landmarks_gt)
Exemplo n.º 10
0
 def predict_proba(self, X):
     score, _ = self.forward(X, False)
     return loss_func.softmax(score)