Exemplo n.º 1
0
def extract_single_river_from_source():
    # Here are the different parameters and their default value fr this script
    default_param = AGPD.get_common_default_param()
    default_param["already_preprocessed"] = False
    default_param["X"] = 0
    default_param["Y"] = 0
    default_param["output_name"] = "Single_River"
    default_param = AGPD.ingest_param(default_param, sys.argv)

    if (default_param["help"] or len(sys.argv) == 1):
        print("""
			This command-line tool preprocess your raster to the right format and remove elevation below a threshold, typically the sea.

			Quick example: lsdtt-extract-single-river file=test_raster.tif X=592149.7 Y=4103817.2

			Option available:
				file: name of the raster (file=name.tif)
				path: path to the file (default = current folder)
				already_preprocessed (default = False): Add the keyword if your raster is already preprocessed for flow analysis, False if it needs preprocessing. To get more control on the preprocessing you can use lsdtt-depressions command.
				X: Easting/X coordinate of the source
				Y: Easting/Y coordinate of the source
				output_name (default = Single_River): prefix of the ouput(s) files.

			Future improvements:
				- Automatic plotting of base statistic
				- Adding Chi/ksn/gradient options
			""")
        quit()

    print(
        "This command-line tool extract a single river from a DEM from the XY coordinates of the source"
    )
    print("Loading the dem")
    mydem = LSDDEM(file_name=default_param["file"],
                   path=default_param["path"],
                   already_preprocessed=bool(
                       default_param["already_preprocessed"]),
                   verbose=True)
    if (bool(default_param["already_preprocessed"]) == False):
        print(
            "I am preprocessing your dem (carving + filling), if you have already done that, you can save time by adding the option already_preprocessed=True to the command line (it saves time)"
        )
        mydem.PreProcessing()

    river = pd.DataFrame(
        mydem.ExtractSingleRiverFromSource(float(default_param["X"]),
                                           float(default_param["Y"])))
    river.to_csv("%s.csv" % (default_param["output_name"]), index=False)
Exemplo n.º 2
0
def concavity_FFS_down_to_top():
    # Here are the different parameters and their default value fr this script
    default_param = AGPD.get_common_default_param()
    default_param["already_preprocessed"] = False
    default_param["save_XY_array"] = False
    default_param["X_source"] = None
    default_param["Y_source"] = None
    default_param["min_elevation"] = None
    default_param["area_threshold"] = None
    default_param["flow_distance_step"] = None
    default_param["min_DA"] = None
    default_param["prefix"] = ""
    default_param = AGPD.ingest_param(default_param, sys.argv)

    if (default_param["help"] or len(sys.argv) == 1 or "help" in sys.argv):
        print("""
			This command-line tool run concavity analysis tools from LSDTopoTools.
			Description of the algorithms in Mudd et al., 2018 -> https://www.earth-surf-dynam.net/6/505/2018/
			To use, run the script with relevant options, for example:
				lsdtt-concavity-down-to-top file=myraster.tif ---

			option available:
				file: name of the raster (file=name.tif)
				path: path to the file (default = current folder)
				todo
				help: if written, diplay this message. Documentation soon to be written.
			""")
        quit()

    try:
        default_param["X_source"] = float(default_param["X_source"])
        default_param["Y_source"] = float(default_param["Y_source"])
        default_param["min_elevation"] = float(default_param["min_elevation"])
        default_param["area_threshold"] = float(
            default_param["area_threshold"])
        default_param["flow_distance_step"] = float(
            default_param["flow_distance_step"])
        default_param["min_DA"] = float(default_param["min_DA"])
    except:
        print(default_param)
        print(
            "I struggle to understand your input parameters: make sure I can convert them to number"
        )
        raise SystemExit("I need to quit now")

    mydem = LSDDEM(file_name=default_param["file"],
                   path=default_param["path"],
                   already_preprocessed=default_param["already_preprocessed"],
                   remove_seas=True,
                   sea_level=default_param["min_elevation"])

    if (default_param["already_preprocessed"] == False):
        print(
            "I am preprocessing your raster with default options, see lsdtt-depressions for extended options."
        )
        print(
            "Command line tools can load already processed rasters with the keyword already_preprocessed"
        )
        mydem.PreProcessing()

    # flwo routines
    print("Processing flow routines with d8 algorithm")
    mydem.CommonFlowRoutines()

    print("Extracting the river")
    river = mydem.ExtractSingleRiverFromSource(default_param["X_source"],
                                               default_param["Y_source"])
    river = pd.DataFrame(river)
    print("Saving teh river to csv file: river_for_concavity.csv")
    river.to_csv("%sriver_for_concavity.csv" % (default_param["prefix"]),
                 index=False)

    print("Initialising the concavity analysis")
    river.sort_values("elevation", inplace=True)
    river.reset_index(drop=True, inplace=True)

    # OUtputs
    global_results = {}
    outlet_info = {
        "X": [],
        "Y": [],
        "elevation": [],
        "flow_distance": [],
        "drainage_area": []
    }

    # potential saving of basins
    XY_basins = {}

    flow_distance_this = river["flow_distance"].min()
    index_this = river["flow_distance"].idxmin()
    while (flow_distance_this < river["flow_distance"].max()
           and river["drainage_area"][index_this] > default_param["min_DA"]):
        print("processing  flow distance =", flow_distance_this)
        del mydem
        mydem = LSDDEM(file_name="%sdem_for_concavity.tif" %
                       (default_param["prefix"]),
                       already_preprocessed=True,
                       remove_seas=True,
                       sea_level=river["elevation"][index_this] - 5)
        mydem.CommonFlowRoutines()
        # mydem.save_array_to_raster_extent(mydem.cppdem.get_DA_raster(), name = "DA", save_directory = "./")

        mydem.ExtractRiverNetwork(
            area_threshold_min=default_param["area_threshold"])
        # print(river.iloc[index_this])
        mydem.DefineCatchment(method="from_XY",
                              X_coords=[river["X"][index_this]],
                              Y_coords=[river["Y"][index_this]],
                              coord_search_radius_nodes=0)
        mydem.GenerateChi()
        print(mydem.df_base_river["source_key"].unique())

        mydem.cppdem.calculate_movern_disorder(0.05, 0.05, 19, 1,
                                               default_param["area_threshold"])
        all_disorder = mydem.cppdem.get_best_fits_movern_per_BK()
        global_results[str(round(
            river["flow_distance"][index_this], 2))] = np.array(
                all_disorder[0]
            )  # [0] means basin 0, which is normal as I only have one
        outlet_info["X"].append(river["X"][index_this])
        outlet_info["Y"].append(river["Y"][index_this])
        outlet_info["elevation"].append(river["elevation"][index_this])
        outlet_info["flow_distance"].append(
            round(river["flow_distance"][index_this], 2))
        outlet_info["drainage_area"].append(river["drainage_area"][index_this])

        # New index
        flow_distance_this += default_param["flow_distance_step"]
        index_this = river.index[
            river["flow_distance"] >= flow_distance_this].values[0]

        np.savez("%sdown_to_top_conc.npz" % (default_param["prefix"]),
                 **global_results)
        pd.DataFrame(outlet_info).to_csv("%sdown_to_top_conc_basin_info.csv" %
                                         (default_param["prefix"]),
                                         index=False)

        if (default_param["save_XY_array"]):
            this_basin = mydem.cppdem.query_xy_for_each_basin()[
                0]  # [0] because I want a single basin there
            print(this_basin)
            XY_basins[str(round(river["flow_distance"][index_this],
                                2))] = this_basin
            np.savez(default_param["prefix"] + "down_to_top_basins_XY.npz",
                     **XY_basins)