Exemplo n.º 1
0
    def setUp(self):
        np.random.seed(1)
        self.bbox = Box2I(Point2I(1000, 2000), Extent2I(200, 100))
        self.filters = ["G", "R", "I"]

        self.imgValue = 10
        images = [ImageF(self.bbox, self.imgValue) for f in self.filters]
        mImage = MultibandImage.fromImages(self.filters, images)

        self.Mask = Mask[MaskPixel]
        # Store the default mask planes for later use
        maskPlaneDict = self.Mask().getMaskPlaneDict()
        self.defaultMaskPlanes = sorted(maskPlaneDict,
                                        key=maskPlaneDict.__getitem__)

        # reset so tests will be deterministic
        self.Mask.clearMaskPlaneDict()
        for p in ("BAD", "SAT", "INTRP", "CR", "EDGE"):
            self.Mask.addMaskPlane(p)

        self.maskValue = self.Mask.getPlaneBitMask("BAD")
        singles = [self.Mask(self.bbox) for f in range(len(self.filters))]
        for n in range(len(singles)):
            singles[n].set(self.maskValue)
        mMask = MultibandMask.fromMasks(self.filters, singles)

        self.varValue = 1e-2
        images = [ImageF(self.bbox, self.varValue) for f in self.filters]
        mVariance = MultibandImage.fromImages(self.filters, images)

        self.maskedImage = MultibandMaskedImage(self.filters,
                                                image=mImage,
                                                mask=mMask,
                                                variance=mVariance)
Exemplo n.º 2
0
 def setUp(self):
     np.random.seed(1)
     self.bbox1 = Box2I(Point2I(1000, 2000), Extent2I(200, 100))
     self.filters = ["G", "R", "I", "Z", "Y"]
     self.value1, self.value2 = 10, 100
     images = [ImageF(self.bbox1, self.value1) for f in self.filters]
     self.mImage1 = MultibandImage.fromImages(self.filters, images)
     self.bbox2 = Box2I(Point2I(1100, 2025), Extent2I(30, 50))
     images = [ImageF(self.bbox2, self.value2) for f in self.filters]
     self.mImage2 = MultibandImage.fromImages(self.filters, images)
Exemplo n.º 3
0
def _testMaskedmageModification(testCase, maskedImage):
    images = [
        ImageF(testCase.bbox, 10 * testCase.imgValue) for f in testCase.filters
    ]
    mImage = MultibandImage.fromImages(testCase.filters, images)
    maskedImage.image.array = mImage.array
    testCase.assertFloatsEqual(maskedImage.image["G"].array, mImage.array[0])
    testCase.assertFloatsEqual(maskedImage["G"].image.array, mImage.array[0])

    singles = [
        testCase.Mask(testCase.bbox) for f in range(len(testCase.filters))
    ]
    for n in range(len(singles)):
        singles[n].set(testCase.maskValue * 2)
    mMask = MultibandMask.fromMasks(testCase.filters, singles)
    maskedImage.mask.array = mMask.array
    testCase.assertFloatsEqual(maskedImage.mask["G"].array, mMask.array[0])
    testCase.assertFloatsEqual(maskedImage["G"].mask.array, mMask.array[0])

    images = [
        ImageF(testCase.bbox, .1 * testCase.varValue) for f in testCase.filters
    ]
    mVariance = MultibandImage.fromImages(testCase.filters, images)
    maskedImage.variance.array = mVariance.array
    testCase.assertFloatsEqual(maskedImage.variance["G"].array,
                               mVariance.array[0])
    testCase.assertFloatsEqual(maskedImage["G"].variance.array,
                               mVariance.array[0])

    subBox = Box2I(Point2I(1100, 2025), Extent2I(30, 50))
    maskedImage.image[:, subBox].array = 12
    testCase.assertFloatsEqual(maskedImage.image["G", subBox].array, 12)
    testCase.assertFloatsEqual(maskedImage["G", subBox].image.array, 12)
    maskedImage["R", subBox].image[:] = 15
    testCase.assertFloatsEqual(maskedImage.image["R", subBox].array, 15)
    testCase.assertFloatsEqual(maskedImage["R", subBox].image.array, 15)

    maskedImage.mask[:, subBox].array = 64
    testCase.assertFloatsEqual(maskedImage.mask["G", subBox].array, 64)
    testCase.assertFloatsEqual(maskedImage["G", subBox].mask.array, 64)
    maskedImage["R", subBox].mask[:] = 128
    testCase.assertFloatsEqual(maskedImage.mask["R", subBox].array, 128)
    testCase.assertFloatsEqual(maskedImage["R", subBox].mask.array, 128)

    maskedImage.variance[:, subBox].array = 1e-6
    testCase.assertFloatsEqual(maskedImage.variance["G", subBox].array, 1e-6)
    testCase.assertFloatsEqual(maskedImage["G", subBox].variance.array, 1e-6)
    maskedImage["R", subBox].variance[:] = 1e-7
    testCase.assertFloatsEqual(maskedImage.variance["R", subBox].array, 1e-7)
    testCase.assertFloatsEqual(maskedImage["R", subBox].variance.array, 1e-7)
Exemplo n.º 4
0
 def projectSpans(radius, value, bbox, asArray):
     ss = SpanSet.fromShape(radius, Stencil.CIRCLE, offset=(10, 10))
     image = ImageF(bbox)
     ss.setImage(image, value)
     if asArray:
         return image.array
     else:
         return image
Exemplo n.º 5
0
def mean_overscans(imagefile, nexp=7, plots=None, verbose=False):
    if nexp is None:
        nexp = 7
    result = [
    ]  # decay constant, amplitude, flux of image, residue of first overscan, sensor number, segment, run number
    for segment in range(1, 16 + 1):
        header = getheader(imagefile)
        info = [
            header['LSST_NUM'], 'Segment {}'.format(segment),
            header['RUNNUM'].split()[0]
        ]
        image_untrimmed = ImageF(imagefile, segment)
        amp = makeAmplifierGeometry(imagefile)

        flat_mean = np.mean(
            imutils.trim(image_untrimmed, imaging=amp.imaging).array[:, -1])
        # mean value of the last column of the image

        image = imutils.trim(image_untrimmed, imaging=amp.serial_overscan)
        overscans_mean = [
            np.mean([image.array[i, j] for i in np.arange(len(image.array))])
            for j in range(len(image.array[0]))
        ]
        bias = np.mean(overscans_mean[5:-2])
        over_mean_subfit = overscans_mean[:nexp]
        params, cov = curve_fit(exp_fit,
                                np.arange(nexp),
                                over_mean_subfit,
                                p0=(10, 10, 20000),
                                bounds=([.1, 0, 0], [20, 300, 50000]))
        residue = params[1] / (flat_mean - bias)

        result.append([params[0], params[1], flat_mean, residue, *info])

        if verbose:
            print('Segment {seg}:\n  Decay    : {p[0]:<10.03g} pixels\n  Amplitude: {p[1]:<10.03g} '\
                    'ADU\n  Offset   : {p[2]:<10.03g} ADU'.format(seg=segment, p=params))
        if plots is None:
            continue
        fig = plt.figure(figsize=(10, 10))
        plt.plot(over_mean_subfit, ls='none', marker='.')
        xfit = np.linspace(0, nexp - 1, 50)
        plt.plot(xfit, [exp_fit(x, *params) for x in xfit])
        plt.title(
            'Superflat Mean Serial Overscan in {0} {1} Run {2}'.format(*info))
        plt.figtext(0.5,0.5,('Decay constant: {p[0]:.03g} pixels \nAmplitude: {p[1]:.03g}'\
                    ' ADU\nImage flux: {0:.00f} ADU\nResidue in first overscan pixel: {1:.03%}').format(flat_mean,residue,p=params))
        plt.ylabel('ADU')
        plt.xlabel('Pixel')
        plt.legend(['Data', 'Fit'])
        fig.patch.set_facecolor('white')
        plt.savefig(('{0}/{1}_{2}_run{3}.png'.format(plots,
                                                     *info)).replace(" ", ""))
        plt.close(fig)

    return result
Exemplo n.º 6
0
def flats(imagefile, verbose=False):
    result = {}
    ccd = makeAmplifierGeometry(imagefile)
    for segment in range(1, 16 + 1):
        image_untrimmed = ImageF(imagefile, segment)  #imutils.dm_hdu(segment))
        amp = ccd[segment]
        flatmean = imutils.mean(imutils.unbias_and_trim \
                (image_untrimmed, overscan=ccd.serial_overscan, imaging=ccd.imaging))
        result[segment] = flatmean
    return result
Exemplo n.º 7
0
 def setUp(self):
     np.random.seed(1)
     self.spans = SpanSet.fromShape(2, Stencil.CIRCLE)
     self.footprint = Footprint(self.spans)
     self.footprint.addPeak(3, 4, 10)
     self.footprint.addPeak(8, 1, 2)
     fp = Footprint(self.spans)
     for peak in self.footprint.getPeaks():
         fp.addPeak(peak["f_x"], peak["f_y"], peak["peakValue"])
     self.peaks = fp.getPeaks()
     self.bbox = self.footprint.getBBox()
     self.filters = ("G", "R", "I")
     singles = []
     images = []
     for n, f in enumerate(self.filters):
         image = ImageF(self.spans.getBBox())
         image.set(n)
         images.append(image.array)
         maskedImage = MaskedImageF(image)
         heavy = makeHeavyFootprint(self.footprint, maskedImage)
         singles.append(heavy)
     self.image = np.array(images)
     self.mFoot = MultibandFootprint(self.filters, singles)
Exemplo n.º 8
0
 def setUp(self):
     np.random.seed(1)
     self.spans = SpanSet.fromShape(2, Stencil.CIRCLE)
     self.footprint = Footprint(self.spans)
     self.footprint.addPeak(3, 4, 10)
     self.footprint.addPeak(8, 1, 2)
     fp = Footprint(self.spans)
     for peak in self.footprint.getPeaks():
         fp.addPeak(peak["f_x"], peak["f_y"], peak["peakValue"])
     self.peaks = fp.getPeaks()
     self.bbox = self.footprint.getBBox()
     self.filters = ("G", "R", "I")
     singles = []
     images = []
     for n, f in enumerate(self.filters):
         image = ImageF(self.spans.getBBox())
         image.set(n)
         images.append(image.array)
         maskedImage = MaskedImageF(image)
         heavy = makeHeavyFootprint(self.footprint, maskedImage)
         singles.append(heavy)
     self.image = np.array(images)
     self.mFoot = MultibandFootprint(self.filters, singles)