Exemplo n.º 1
0
    def get_ccd_data(self, ccd, data, **kwargs):
        """Get the bias values and update the data dictionary

        Parameters
        ----------
        ccd : `MaskedCCD`
            The ccd we are getting data from
        data : `dict`
            The data we are updating

        Keywords
        --------
        slot : `str`
            The slot name
        ifile : `int`
            The file index
        nfiles_used : `int`
            Total number of files
        """
        slot = self.config.slot
        bias_type = self.get_bias_algo()
        ifile = kwargs['ifile']
        nfiles = kwargs['nfiles']

        amps = get_amp_list(ccd)
        for i, amp in enumerate(amps):
            regions = get_geom_regions(ccd, amp)
            serial_oscan = regions['serial_overscan']
            img = get_raw_image(ccd, amp)
            bimg = imutil.bias_image(img, serial_oscan, bias_method=bias_type)
            bimg_row_mean = bimg[serial_oscan].getArray().mean(1)
            key_str = "biasval_%s_a%02i" % (slot, i)
            if key_str not in data:
                data[key_str] = np.ndarray((len(bimg_row_mean), nfiles))
            data[key_str][:, ifile] = bimg_row_mean
Exemplo n.º 2
0
    def get_ccd_data(self, ccd, ref_frames, **kwargs):
        """Get the bias values and update the data dictionary

        Parameters
        ----------
        ccd : `MaskedCCD`
            The ccd we are getting data from
        data : `dict`
            The data we are updating

        Keywords
        --------
        ifile : `int`
            The file index
        s_correl : `array`
            Serial overscan correlations
        p_correl : `array`
            Parallel overscan correlations
        """
        ifile = kwargs['ifile']
        s_correl = kwargs['s_correl']
        p_correl = kwargs['p_correl']
        nrow_i = kwargs['nrow_i']
        ncol_i = kwargs['ncol_i']

        amps = get_amp_list(ccd)
        for i, amp in enumerate(amps):

            regions = get_geom_regions(ccd, amp)
            image = get_raw_image(ccd, amp)
            frames = get_image_frames_2d(image, regions)

            del_i_array = frames['imaging'] - ref_frames[i]['imaging']
            del_s_array = frames['serial_overscan'] - ref_frames[i][
                'serial_overscan']
            del_p_array = frames['parallel_overscan'] - ref_frames[i][
                'parallel_overscan']

            dd_s = del_s_array.mean(1)[0:nrow_i] - del_i_array.mean(1)
            dd_p = del_p_array.mean(0)[0:ncol_i] - del_i_array.mean(0)
            mask_s = np.fabs(dd_s) < self.clip_value
            mask_p = np.fabs(dd_p) < self.clip_value

            s_correl[i, ifile - 1] = np.corrcoef(
                del_s_array.mean(1)[0:nrow_i][mask_s], dd_s[mask_s])[0, 1]
            p_correl[i, ifile - 1] = np.corrcoef(
                del_p_array.mean(0)[0:ncol_i][mask_p], dd_p[mask_p])[0, 1]
Exemplo n.º 3
0
    def get_ccd_data(self, butler, ccd, **kwargs):
        """Get the serial overscan data

        Parameters
        ----------
        butler : `Butler`
            The data butler
        ccd : `MaskedCCD`
            The ccd we are getting data from
        data : `dict`
            The data we are updating

        Keywords
        --------
        superbias_frame : `MaskedCCD`
            The superbias frame to subtract away
        boundry : `int`
            Size of buffer around edge of overscan region

        Returns
        -------
        overscans : `list`
            The overscan data
        """
        amps = get_amp_list(ccd)
        superbias_frame = kwargs.get('superbias_frame', None)
        overscans = []
        for amp in amps:

            superbias_im = self.get_superbias_amp_image(butler, superbias_frame, amp)
            regions = get_geom_regions(ccd, amp)
            serial_oscan = regions['serial_overscan']

            img = get_raw_image(ccd, amp)
            image = unbias_amp(img, serial_oscan, bias_type=None, superbias_im=superbias_im).image
            oscan_copy = copy.deepcopy(serial_oscan)
            oscan_copy.grow(-self.boundry)
            oscan_data = image[oscan_copy]
            step_x = regions['step_x']
            step_y = regions['step_y']
            overscans.append(oscan_data.getArray()[::step_x, ::step_y])
        return overscans
Exemplo n.º 4
0
def unbias(input_file,
           output_file,
           bias_method,
           bias_method_col=None,
           superbias_file=None):
    # build output file by copying input
    shutil.copyfile(input_file, output_file)

    ccd = get_ccd_from_id(None, input_file, [])
    hdulist = fits.open(input_file)

    if superbias_file is not None:
        superbias_ccd = get_ccd_from_id(None, superbias_file, [])
    else:
        superbias_ccd = None

    amps = get_amp_list(ccd)
    offset = get_amp_offset(ccd, superbias_ccd)

    for i, amp in enumerate(amps):
        regions = get_geom_regions(ccd, amp)
        serial_oscan = regions['serial_overscan']
        parallel_oscan = regions['parallel_overscan']
        img = get_raw_image(ccd, amp)
        if superbias_ccd is not None:
            superbias_im = get_raw_image(superbias_frame, amp + offset)
        else:
            superbias_im = None
        image = unbias_amp(img,
                           serial_oscan,
                           bias_type=bias_method,
                           superbias_im=superbias_im,
                           bias_type_col=bias_method_col,
                           parallel_oscan=parallel_oscan)
        fits.update(output_file,
                    image.image.array,
                    amp,
                    header=hdulist[amp].header)
Exemplo n.º 5
0
    def extract(self, butler, data, **kwargs):
        """Extract data

        Parameters
        ----------
        butler : `Butler`
            The data butler
        data : `dict`
            Dictionary (or other structure) contain the input data
        kwargs
            Used to override default configuration

        Returns
        -------
        dtables : `TableDict`
            Output data tables
        """
        self.safe_update(**kwargs)

        slot = self.config.slot
        qe_files = data['LAMBDA']
        lams = []
        for file in qe_files:
            lam = file.split('flat_')[1].split('_')[0]
            lams.append(lam)

        mask_files = self.get_mask_files()
        superbias_frame = self.get_superbias_frame(mask_files)
        bias_type = self.get_bias_algo()

        self.log_info_slot_msg(self.config, "%i files" % len(qe_files))

        sflat_table_file = self.get_filename_from_format(RAFT_SFLAT_TABLE_FORMATTER, "sflat.fits")

        sflat_tables = TableDict(sflat_table_file)
        bbox_dict = construct_bbox_dict(sflat_tables['defects'])
        slot_bbox_dict = bbox_dict[slot]

        # This is a dictionary of dictionaries to store all the
        # data you extract from the qe_files
        data_dict = dict(SLOT=[], AMP=[], XCORNER=[], YCORNER=[], XSIZE=[], YSIZE=[])
        for lam in lams:
            data_dict['FLUX_' + lam] = []
            data_dict['MED_' + lam] = []

        temp_list = []

        # Analysis goes here, you should fill data_dict with data extracted
        # by the analysis
        #
        # For this slot, loop over qe files, loop over amplifiers, loop over dust spots in that amplifier,
        #  record the flux and median for each dust spot
        # Then loop over dust spots CCDs, amplifiers, and QE files to accumulate the output dictionary
        ccd = self.get_ccd(butler, qe_files[0], mask_files)
        amps = get_amp_list(ccd)
        spot = 0
        for ifile, qe_file in enumerate(qe_files):
            lam = qe_file.split('flat_')[1].split('_')[0]
            for i, amp in enumerate(amps):
                bbox_list = slot_bbox_dict[amp]

                if len(bbox_list) > 100:
                    if i == 0:
                        self.log.warn("Skipping slot:amp %s:%i with %i defects" % (slot, amp, len(bbox_list)))
                    continue

                ccd = self.get_ccd(butler, qe_file, mask_files)
                regions = get_geom_regions(ccd, amp)
                serial_oscan = regions['serial_overscan']
                imaging = regions['imaging']
                img = get_raw_image(ccd, amp)
                if superbias_frame is not None:
                    if butler is not None:
                        superbias_im = get_raw_image(superbias_frame, amp)
                    else:
                        superbias_im = get_raw_image(superbias_frame, amp)
                else:
                    superbias_im = None

                image = unbias_amp(img, serial_oscan, bias_type=bias_type,
                                   superbias_im=superbias_im, region=imaging)
                for bbox in bbox_list:
                    if ifile == 0:
                        data_dict['SLOT'].append(slot)
                        #data_dict['LAM'].append(lam)
                        data_dict['AMP'].append(amp)
                        data_dict['XCORNER'].append(bbox.getBeginX())
                        data_dict['YCORNER'].append(bbox.getBeginY())
                        data_dict['XSIZE'].append(bbox.getWidth())
                        data_dict['YSIZE'].append(bbox.getHeight())

                    try:
                        cutout = image[bbox]
                    except Exception:
                        pass
                    # Here evaluate the 'flux' of the feature, relative to the median
                    # value of the amplifier image.  May also want to assemble bounding
                    # box corners into a ds9 region file, CCD by CCD
                    med = np.median(image.array)
                    flux = np.sum(cutout.array) - bbox.getWidth()*bbox.getHeight()*med
                    spot += 1
                    #temp_dict[spot].append((lam, flux, med))
                    temp_list.append((lam, flux, med))

        for i, tmp_data in enumerate(temp_list):
            #data_dict['SLOT'].append(temp_dict['SLOT'][i])
            #data_dict['AMP'].append(temp_dict['AMP'][i])
            #lam = temp_dict['LAM'][i]
            lam, flux, med = tmp_data
            data_dict['FLUX_' + lam].append(flux)  #temp_dict['FLUX'][i])
            data_dict['MED_' + lam].append(med)  #np.median(image.array))


        sys.stdout.write("!\n")
        sys.stdout.flush()

        dtables = TableDict()
        dtables.make_datatable('files', make_file_dict(butler, qe_files))
        #dtables.make_datatable('dust_color', data_dict)
        dtables.make_datatable('dust_color_hack', data_dict)

        return dtables
Exemplo n.º 6
0
    def extract(self, butler, data, **kwargs):
        """Extract data

        Parameters
        ----------
        butler : `Butler`
            The data butler
        data : `dict`
            Dictionary (or other structure) contain the input data
        kwargs
            Used to override default configuration

        Returns
        -------
        dtables : `TableDict`
            output data tables
        """
        self.safe_update(**kwargs)

        slots = self.config.slots
        if slots is None:
            slots = ALL_SLOTS

        if butler is not None:
            self.log.warn("Ignoring butler")

        dark_current_data = dict(median=[],
                                 stdev=[],
                                 mean=[],
                                 fit_mean=[],
                                 fit_width=[],
                                 fit_dof=[],
                                 fit_chi2=[],
                                 exptime=[],
                                 current=[],
                                 slot=[],
                                 amp=[])

        self.log_info_raft_msg(self.config, "")

        for islot, slot in enumerate(slots):

            self.log_progress("  %s" % slot)

            mask_files = self.get_mask_files(slot=slot)
            superdark_file = data[slot]

            if not os.path.exists(superdark_file):
                self.log.warn("  %s does not exist, skipping" % superdark_file)
                continue

            superdark_frame = self.get_ccd(None, superdark_file, mask_files)
            exptime = get_exposure_time(superdark_frame)

            amps = get_amp_list(superdark_frame)
            for iamp, amp in enumerate(amps):
                regions = get_geom_regions(superdark_frame, amp)
                imaging = regions['imaging']
                superdark_im = get_raw_image(superdark_frame, amp).image
                image_data = superdark_im[imaging].array
                median = np.median(image_data)
                stdev = np.std(image_data)
                hist_bins = np.linspace(median - 5 * stdev, median + 5 * stdev, 101)
                hist = np.histogram(image_data, bins=hist_bins)
                fit_result = gauss_fit(hist)
                fit_pars = fit_result[0]
                dark_current_data['median'].append(median)
                dark_current_data['stdev'].append(stdev)
                dark_current_data['mean'].append(np.mean(image_data))
                dark_current_data['fit_mean'].append(fit_pars[1])
                dark_current_data['fit_width'].append(fit_pars[2])
                dark_current_data['fit_dof'].append(0.)
                dark_current_data['fit_chi2'].append(0.)
                dark_current_data['exptime'].append(exptime)
                dark_current_data['current'].append(median/exptime)
                dark_current_data['slot'].append(islot)
                dark_current_data['amp'].append(iamp)

        self.log_progress("Done!")

        dtables = TableDict()
        dtables.make_datatable('dark_current', dark_current_data)

        return dtables
Exemplo n.º 7
0
    def extract(self, butler, data, **kwargs):
        """Extract the correlations between the imaging section
        and the overscan regions in a series of bias frames

        Parameters
        ----------
        butler : `Butler`
            The data butler
        data : `dict`
            Dictionary (or other structure) contain the input data
        kwargs
            Used to override default configuration

        Returns
        -------
        dtables : `TableDict`
            The resulting data
        """
        self.safe_update(**kwargs)

        bias_files = data['BIAS']

        mask_files = self.get_mask_files()

        self.log_info_slot_msg(self.config, "%i files" % len(bias_files))

        ref_frames = {}

        nfiles = len(bias_files)
        s_correl = np.ndarray((16, nfiles - 1))
        p_correl = np.ndarray((16, nfiles - 1))

        for ifile, bias_file in enumerate(bias_files):
            if ifile % 10 == 0:
                self.log_progress("  %i" % ifile)

            ccd = self.get_ccd(butler, bias_file, mask_files)
            if ifile == 0:
                dims = get_dims_from_ccd(ccd)
                nrow_i = dims['nrow_i']
                ncol_i = dims['ncol_i']
                amps = get_amp_list(ccd)
                for i, amp in enumerate(amps):
                    regions = get_geom_regions(ccd, amp)
                    image = get_raw_image(ccd, amp)
                    ref_frames[i] = get_image_frames_2d(image, regions)
                    continue
            self.get_ccd_data(ccd,
                              ref_frames,
                              ifile=ifile,
                              s_correl=s_correl,
                              p_correl=p_correl,
                              nrow_i=nrow_i,
                              ncol_i=ncol_i)

        self.log_progress("Done!")

        data = {}
        for i in range(16):
            data['s_correl_a%02i' % i] = s_correl[i]
            data['p_correl_a%02i' % i] = p_correl[i]

        dtables = TableDict()
        dtables.make_datatable('files', make_file_dict(butler, bias_files))
        dtables.make_datatable("correl", data)
        return dtables
Exemplo n.º 8
0
    def get_ccd_data(self, ccd, data, **kwargs):
        """Get the bias values and update the data dictionary

        Parameters
        ----------
        ccd : `MaskedCCD`
            The ccd we are getting data from
        data : `dict`
            The data we are updating

        Keywords
        --------
        slot : `str`
            The slot name
        ifile : `int`
            The file index
        nfiles_used : `int`
            Total number of files
        bias_type : `str`
            Method to use to construct bias
        std : `bool`
            Used standard deviation instead of mean
        superbias_frame : `MaskedCCD`
            The superbias frame to subtract away
        """
        nfiles_used = kwargs.get('nfiles_used', 1)
        ifile = kwargs.get('ifile', 0)
        slot = kwargs.get('slot')
        superbias_frame = kwargs.get('superbias_frame', None)
        offset = get_amp_offset(ccd, superbias_frame)
        bias_type = self.get_bias_algo()
        bias_type_col = self.get_bias_col_algo()
        amps = get_amp_list(ccd)
        for i, amp in enumerate(amps):
            regions = get_geom_regions(ccd, amp)
            serial_oscan = regions['serial_overscan']
            parallel_oscan = regions['parallel_overscan']
            img = get_raw_image(ccd, amp)
            if superbias_frame is not None:
                superbias_im = get_raw_image(superbias_frame, amp + offset)
            else:
                superbias_im = None
            image = unbias_amp(img,
                               serial_oscan,
                               bias_type=bias_type,
                               bias_type_col=bias_type_col,
                               superbias_im=superbias_im,
                               parallel_oscan=parallel_oscan)
            frames = get_image_frames_2d(image, regions)

            for key, region in zip(REGION_KEYS, REGION_NAMES):
                framekey_row = "row_%s" % key
                framekey_col = "col_%s" % key
                struct = array_struct(frames[region], do_std=self.config.std)
                key_str = "biasst_%s_a%02i" % (slot, i)
                if key_str not in data[framekey_row]:
                    data[framekey_row][key_str] = np.ndarray(
                        (len(struct['rows']), nfiles_used))
                if key_str not in data[framekey_col]:
                    data[framekey_col][key_str] = np.ndarray(
                        (len(struct['cols']), nfiles_used))
                data[framekey_row][key_str][:, ifile] = struct['rows']
                data[framekey_col][key_str][:, ifile] = struct['cols']