def testFilters(self):
        wavelengths = np.linspace(3000, 12000, 1000)
        point = Point2D(1000, -500)

        def check(curve, central, w1, w2):
            # check that throughput within w1 of central is strictly greater
            # than throughput outside w2 of central
            throughput = curve.sampleAt(point, wavelengths)
            mid = np.logical_and(wavelengths > central - w1,
                                 wavelengths < central + w1)
            outer = np.logical_or(wavelengths < central - w2,
                                  wavelengths > central + w2)
            self.assertGreater(throughput[mid].min(), throughput[outer].max())

        for curves in makeTransmissionCurves.getFilterTransmission().values():
            check(curves["NB0387"], 3870, 50, 100)
            check(curves["NB0816"], 8160, 50, 100)
            check(curves["NB0921"], 9210, 50, 100)
            check(curves["HSC-G"], 4730, 500, 1500)
            check(curves["HSC-R"], 6230, 500, 1500)
            check(curves["HSC-R2"], 6230, 500, 1500)
            check(curves["HSC-I"], 7750, 500, 1500)
            check(curves["HSC-I2"], 7750, 500, 1500)
            check(curves["HSC-Z"], 8923, 500, 1500)
            check(curves["HSC-Y"], 10030, 500, 1500)
def main(butler):
    for start, nested in makeTransmissionCurves.getFilterTransmission().items():
        for name, curve in nested.items():
            if curve is not None:
                butler.put(curve, "transmission_filter", filter=name)
    for start, nested in makeTransmissionCurves.getSensorTransmission().items():
        for ccd, curve in nested.items():
            if curve is not None:
                butler.put(curve, "transmission_sensor", ccd=ccd)
    for start, curve in makeTransmissionCurves.getOpticsTransmission().items():
        if curve is not None:
            butler.put(curve, "transmission_optics")
    for start, curve in makeTransmissionCurves.getAtmosphereTransmission().items():
        if curve is not None:
            butler.put(curve, "transmission_atmosphere")
def main(butler):
    for start, nested in makeTransmissionCurves.getFilterTransmission().items(
    ):
        for name, curve in nested.items():
            if curve is not None:
                butler.put(curve, "transmission_filter", filter=name)
    for start, nested in makeTransmissionCurves.getSensorTransmission().items(
    ):
        for ccd, curve in nested.items():
            if curve is not None:
                butler.put(curve, "transmission_sensor", ccd=ccd)
    for start, curve in makeTransmissionCurves.getOpticsTransmission().items():
        if curve is not None:
            butler.put(curve, "transmission_optics")
    for start, curve in makeTransmissionCurves.getAtmosphereTransmission(
    ).items():
        if curve is not None:
            butler.put(curve, "transmission_atmosphere")
    def testRadialDependence(self):
        wavelengths = np.linspace(5000, 9000, 500)
        radii = np.linspace(0, 20000, 50)

        def computeMeanWavelengths(curve):
            w = []
            for radius in radii:
                throughput = curve.sampleAt(Point2D(radius, 0), wavelengths)
                w.append(np.dot(throughput, wavelengths) / throughput.sum())
            return np.array(w)

        for curves in makeTransmissionCurves.getFilterTransmission().values():
            r = computeMeanWavelengths(curves['HSC-R'])
            r2 = computeMeanWavelengths(curves['HSC-R2'])
            i = computeMeanWavelengths(curves['HSC-I'])
            i2 = computeMeanWavelengths(curves['HSC-I2'])
            # i2 and r2 should have lower variance as a function of radius
            self.assertLess(r2.std(), r.std())
            self.assertLess(i2.std(), i.std())
            # the mean wavelengths of the two r and two i filters should
            # neverthess be close (within 100 angstroms)
            self.assertLess(np.abs(r2.mean() - r.mean()), 100)
            self.assertLess(np.abs(i2.mean() - i.mean()), 100)
    def testRadialDependence(self):
        wavelengths = np.linspace(5000, 9000, 500)
        radii = np.linspace(0, 20000, 50)

        def computeMeanWavelengths(curve):
            w = []
            for radius in radii:
                throughput = curve.sampleAt(Point2D(radius, 0), wavelengths)
                w.append(np.dot(throughput, wavelengths)/throughput.sum())
            return np.array(w)

        for curves in makeTransmissionCurves.getFilterTransmission().values():
            r = computeMeanWavelengths(curves['HSC-R'])
            r2 = computeMeanWavelengths(curves['HSC-R2'])
            i = computeMeanWavelengths(curves['HSC-I'])
            i2 = computeMeanWavelengths(curves['HSC-I2'])
            # i2 and r2 should have lower variance as a function of radius
            self.assertLess(r2.std(), r.std())
            self.assertLess(i2.std(), i.std())
            # the mean wavelengths of the two r and two i filters should
            # neverthess be close (within 100 angstroms)
            self.assertLess(np.abs(r2.mean() - r.mean()), 100)
            self.assertLess(np.abs(i2.mean() - i.mean()), 100)
    def testFilters(self):
        wavelengths = np.linspace(3000, 12000, 1000)
        point = Point2D(1000, -500)

        def check(curve, central, w1, w2):
            # check that throughput within w1 of central is strictly greater
            # than throughput outside w2 of central
            throughput = curve.sampleAt(point, wavelengths)
            mid = np.logical_and(wavelengths > central - w1, wavelengths < central + w1)
            outer = np.logical_or(wavelengths < central - w2, wavelengths > central + w2)
            self.assertGreater(throughput[mid].min(), throughput[outer].max())

        for curves in makeTransmissionCurves.getFilterTransmission().values():
            check(curves["NB0387"], 3870, 50, 100)
            check(curves["NB0816"], 8160, 50, 100)
            check(curves["NB0921"], 9210, 50, 100)
            check(curves["HSC-G"], 4730, 500, 1500)
            check(curves["HSC-R"], 6230, 500, 1500)
            check(curves["HSC-R2"], 6230, 500, 1500)
            check(curves["HSC-I"], 7750, 500, 1500)
            check(curves["HSC-I2"], 7750, 500, 1500)
            check(curves["HSC-Z"], 8923, 500, 1500)
            check(curves["HSC-Y"], 10030, 500, 1500)
Exemplo n.º 7
0
    def testRadialDependence(self):
        wavelengths = np.linspace(3000, 11000, 500)
        radii = np.linspace(0, 20000, 50)

        def computeMeanWavelengths(curve):
            w = []
            for radius in radii:
                throughput = curve.sampleAt(Point2D(radius, 0), wavelengths)
                w.append(np.dot(throughput, wavelengths) / throughput.sum())
            return np.array(w)

        for curves in makeTransmissionCurves.getFilterTransmission().values():
            r = computeMeanWavelengths(curves['HSC-R'])
            r2 = computeMeanWavelengths(curves['HSC-R2'])
            i = computeMeanWavelengths(curves['HSC-I'])
            i2 = computeMeanWavelengths(curves['HSC-I2'])
            # i2 and r2 should have lower variance as a function of radius
            self.assertLess(r2.std(), r.std())
            self.assertLess(i2.std(), i.std())
            # the mean wavelengths of the two r and two i filters should
            # neverthess be close (within 100 angstroms)
            self.assertLess(np.abs(r2.mean() - r.mean()), 100)
            self.assertLess(np.abs(i2.mean() - i.mean()), 100)
            # Ensure that the nb vary but not too much
            n387 = computeMeanWavelengths(curves['NB0387'])
            self.assertLess(np.abs(n387.mean() - 3870.0), 20.0)
            self.assertGreater(n387.std(), 0.0)
            n816 = computeMeanWavelengths(curves['NB0816'])
            self.assertLess(np.abs(n816.mean() - 8160.0), 20.0)
            self.assertGreater(n816.std(), 0.0)
            n921 = computeMeanWavelengths(curves['NB0921'])
            self.assertLess(np.abs(n921.mean() - 9210.0), 20.0)
            self.assertGreater(n921.std(), 0.0)
            n1010 = computeMeanWavelengths(curves['NB1010'])
            self.assertLess(np.abs(n1010.mean() - 10100.0), 20.0)
            self.assertGreater(n1010.std(), 0.0)
Exemplo n.º 8
0
    def writeCuratedCalibrations(self, butler):
        """Write human-curated calibration Datasets to the given Butler with
        the appropriate validity ranges.

        This is a temporary API that should go away once obs_ packages have
        a standardized approach to this problem.
        """

        # Write cameraGeom.Camera, with an infinite validity range.
        datasetType = DatasetType("camera",
                                  ("instrument", "calibration_label"),
                                  "TablePersistableCamera",
                                  universe=butler.registry.dimensions)
        butler.registry.registerDatasetType(datasetType)
        unboundedDataId = addUnboundedCalibrationLabel(butler.registry,
                                                       self.getName())
        camera = self.getCamera()
        butler.put(camera, datasetType, unboundedDataId)

        # Write brighter-fatter kernel, with an infinite validity range.
        datasetType = DatasetType("bfKernel",
                                  ("instrument", "calibration_label"),
                                  "NumpyArray",
                                  universe=butler.registry.dimensions)
        butler.registry.registerDatasetType(datasetType)
        # Load and then put instead of just moving the file in part to ensure
        # the version in-repo is written with Python 3 and does not need
        # `encoding='latin1'` to be read.
        bfKernel = self.getBrighterFatterKernel()
        butler.put(bfKernel, datasetType, unboundedDataId)

        # The following iterate over the values of the dictionaries returned by the transmission functions
        # and ignore the date that is supplied. This is due to the dates not being ranges but single dates,
        # which do not give the proper notion of validity. As such unbounded calibration labels are used
        # when inserting into the database. In the future these could and probably should be updated to
        # properly account for what ranges are considered valid.

        # Write optical transmissions
        opticsTransmissions = getOpticsTransmission()
        datasetType = DatasetType("transmission_optics",
                                  ("instrument", "calibration_label"),
                                  "TablePersistableTransmissionCurve",
                                  universe=butler.registry.dimensions)
        butler.registry.registerDatasetType(datasetType)
        for entry in opticsTransmissions.values():
            if entry is None:
                continue
            butler.put(entry, datasetType, unboundedDataId)

        # Write transmission sensor
        sensorTransmissions = getSensorTransmission()
        datasetType = DatasetType(
            "transmission_sensor",
            ("instrument", "detector", "calibration_label"),
            "TablePersistableTransmissionCurve",
            universe=butler.registry.dimensions)
        butler.registry.registerDatasetType(datasetType)
        for entry in sensorTransmissions.values():
            if entry is None:
                continue
            for sensor, curve in entry.items():
                dataId = DataId(unboundedDataId, detector=sensor)
                butler.put(curve, datasetType, dataId)

        # Write filter transmissions
        filterTransmissions = getFilterTransmission()
        datasetType = DatasetType(
            "transmission_filter",
            ("instrument", "physical_filter", "calibration_label"),
            "TablePersistableTransmissionCurve",
            universe=butler.registry.dimensions)
        butler.registry.registerDatasetType(datasetType)
        for entry in filterTransmissions.values():
            if entry is None:
                continue
            for band, curve in entry.items():
                dataId = DataId(unboundedDataId, physical_filter=band)
                butler.put(curve, datasetType, dataId)

        # Write atmospheric transmissions, this only as dimension of instrument as other areas will only
        # look up along this dimension (ISR)
        atmosphericTransmissions = getAtmosphereTransmission()
        datasetType = DatasetType("transmission_atmosphere", ("instrument", ),
                                  "TablePersistableTransmissionCurve",
                                  universe=butler.registry.dimensions)
        butler.registry.registerDatasetType(datasetType)
        for entry in atmosphericTransmissions.values():
            if entry is None:
                continue
            butler.put(entry, datasetType, {"instrument": self.getName()})

        # Write defects with validity ranges taken from obs_subaru_data/hsc/defects
        # (along with the defects themselves).
        datasetType = DatasetType(
            "defects", ("instrument", "detector", "calibration_label"),
            "DefectsList",
            universe=butler.registry.dimensions)
        butler.registry.registerDatasetType(datasetType)
        defectPath = os.path.join(getPackageDir("obs_subaru_data"), "hsc",
                                  "defects")
        camera = self.getCamera()
        defectsDict = read_all_defects(defectPath, camera)
        endOfTime = '20380119T031407'
        with butler.transaction():
            for det in defectsDict:
                detector = camera[det]
                times = sorted([k for k in defectsDict[det]])
                defects = [defectsDict[det][time] for time in times]
                times = times + [
                    parser.parse(endOfTime),
                ]
                for defect, beginTime, endTime in zip(defects, times[:-1],
                                                      times[1:]):
                    md = defect.getMetadata()
                    dataId = DataId(
                        universe=butler.registry.dimensions,
                        instrument=self.getName(),
                        calibration_label=
                        f"defect/{md['CALIBDATE']}/{md['DETECTOR']}")
                    dataId.entries["calibration_label"][
                        "valid_first"] = beginTime
                    dataId.entries["calibration_label"]["valid_last"] = endTime
                    butler.registry.addDimensionEntry("calibration_label",
                                                      dataId)
                    butler.put(defect,
                               datasetType,
                               dataId,
                               detector=detector.getId())
Exemplo n.º 9
0
    def writeCuratedCalibrations(self, butler):
        """Write human-curated calibration Datasets to the given Butler with
        the appropriate validity ranges.

        This is a temporary API that should go away once obs_ packages have
        a standardized approach to this problem.
        """

        # Write cameraGeom.Camera, with an infinite validity range.
        datasetType = DatasetType("camera", ("instrument", "calibration_label"), "TablePersistableCamera")
        butler.registry.registerDatasetType(datasetType)
        unboundedDataId = addUnboundedCalibrationLabel(butler.registry, self.getName())
        camera = self.getCamera()
        butler.put(camera, datasetType, unboundedDataId)

        # Write brighter-fatter kernel, with an infinite validity range.
        datasetType = DatasetType("bfKernel", ("instrument", "calibration_label"), "NumpyArray")
        butler.registry.registerDatasetType(datasetType)
        # Load and then put instead of just moving the file in part to ensure
        # the version in-repo is written with Python 3 and does not need
        # `encoding='latin1'` to be read.
        bfKernel = self.getBrighterFatterKernel()
        butler.put(bfKernel, datasetType, unboundedDataId)

        # The following iterate over the values of the dictionaries returned by the transmission functions
        # and ignore the date that is supplied. This is due to the dates not being ranges but single dates,
        # which do not give the proper notion of validity. As such unbounded calibration labels are used
        # when inserting into the database. In the future these could and probably should be updated to
        # properly account for what ranges are considered valid.

        # Write optical transmissions
        opticsTransmissions = getOpticsTransmission()
        datasetType = DatasetType("transmission_optics",
                                  ("instrument", "calibration_label"),
                                  "TablePersistableTransmissionCurve")
        butler.registry.registerDatasetType(datasetType)
        for entry in opticsTransmissions.values():
            if entry is None:
                continue
            butler.put(entry, datasetType, unboundedDataId)

        # Write transmission sensor
        sensorTransmissions = getSensorTransmission()
        datasetType = DatasetType("transmission_sensor",
                                  ("instrument", "detector", "calibration_label"),
                                  "TablePersistableTransmissionCurve")
        butler.registry.registerDatasetType(datasetType)
        for entry in sensorTransmissions.values():
            if entry is None:
                continue
            for sensor, curve in entry.items():
                dataId = DataId(unboundedDataId, detector=sensor)
                butler.put(curve, datasetType, dataId)

        # Write filter transmissions
        filterTransmissions = getFilterTransmission()
        datasetType = DatasetType("transmission_filter",
                                  ("instrument", "physical_filter", "calibration_label"),
                                  "TablePersistableTransmissionCurve")
        butler.registry.registerDatasetType(datasetType)
        for entry in filterTransmissions.values():
            if entry is None:
                continue
            for band, curve in entry.items():
                dataId = DataId(unboundedDataId, physical_filter=band)
                butler.put(curve, datasetType, dataId)

        # Write atmospheric transmissions, this only as dimension of instrument as other areas will only
        # look up along this dimension (ISR)
        atmosphericTransmissions = getAtmosphereTransmission()
        datasetType = DatasetType("transmission_atmosphere", ("instrument",),
                                  "TablePersistableTransmissionCurve")
        butler.registry.registerDatasetType(datasetType)
        for entry in atmosphericTransmissions.values():
            if entry is None:
                continue
            butler.put(entry, datasetType, {"instrument": self.getName()})

        # Write defects with validity ranges taken from obs_subaru/hsc/defects
        # (along with the defects themselves).
        datasetType = DatasetType("defects", ("instrument", "detector", "calibration_label"), "DefectsList")
        butler.registry.registerDatasetType(datasetType)
        defectPath = os.path.join(getPackageDir("obs_subaru"), "hsc", "defects")
        dbPath = os.path.join(defectPath, "defectRegistry.sqlite3")
        db = sqlite3.connect(dbPath)
        db.row_factory = sqlite3.Row
        sql = "SELECT path, ccd, validStart, validEnd FROM defect"
        with butler.transaction():
            for row in db.execute(sql):
                dataId = DataId(universe=butler.registry.dimensions,
                                instrument=self.getName(),
                                calibration_label=f"defect/{row['path']}/{row['ccd']}")
                dataId.entries["calibration_label"]["valid_first"] = readDateTime(row["validStart"])
                dataId.entries["calibration_label"]["valid_last"] = readDateTime(row["validEnd"])
                butler.registry.addDimensionEntry("calibration_label", dataId)
                ref = butler.registry.addDataset(datasetType, dataId, run=butler.run, recursive=True,
                                                 detector=row['ccd'])
                butler.datastore.ingest(os.path.join(defectPath, row["path"]), ref, transfer="copy")