Exemplo n.º 1
0
     bfs.append(
         fs.M5_diff_basis_function(filtername=filtername2, nside=nside))
 bfs.append(
     fs.Target_map_basis_function(filtername=filtername,
                                  target_map=target_map[filtername],
                                  out_of_bounds_val=hp.UNSEEN,
                                  nside=nside,
                                  norm_factor=norm_factor))
 if filtername2 is not None:
     bfs.append(
         fs.Target_map_basis_function(filtername=filtername2,
                                      target_map=target_map[filtername2],
                                      out_of_bounds_val=hp.UNSEEN,
                                      nside=nside,
                                      norm_factor=norm_factor))
 bfs.append(fs.Slewtime_basis_function(filtername=filtername, nside=nside))
 bfs.append(fs.Strict_filter_basis_function(filtername=filtername))
 bfs.append(
     fs.Zenith_shadow_mask_basis_function(nside=nside,
                                          shadow_minutes=60.,
                                          max_alt=76.))
 weights = np.array([3.0, 3.0, .3, .3, 3., 3., 0.])
 if filtername2 is None:
     # Need to scale weights up so filter balancing still works properly.
     weights = np.array([6.0, 0.6, 3., 3., 0.])
 # XXX-
 # This is where we could add a look-ahead basis function to include m5_diff in the future.
 # Actually, having a near-future m5 would also help prevent switching to u or g right at twilight?
 # Maybe just need a "filter future" basis function?
 if filtername2 is None:
     survey_name = 'blob, %s' % filtername
if __name__ == "__main__":

    survey_length = 365.25  # days
    # Define what we want the final visit ratio map to look like
    target_map = fs.standard_goals()['r']
    filtername = 'r'

    bfs = []
    bfs.append(fs.M5_diff_basis_function(filtername=filtername, teff=False))
    bfs.append(
        fs.Target_map_basis_function(target_map=target_map,
                                     filtername=filtername,
                                     out_of_bounds_val=hp.UNSEEN))
    bfs.append(fs.North_south_patch_basis_function(zenith_min_alt=50.))
    bfs.append(fs.Slewtime_basis_function(filtername=filtername))

    weights = np.array([1., 0.2, 1., 2.])
    surveys = []
    surveys.append(
        fs.Greedy_survey_fields(bfs,
                                weights,
                                block_size=1,
                                filtername=filtername))
    surveys.append(fs.Pairs_survey_scripted([], []))
    scheduler = fs.Core_scheduler(surveys)

    observatory = Speed_observatory()
    observatory, scheduler, observations = fs.sim_runner(
        observatory,
        scheduler,
Exemplo n.º 3
0
def year_1_surveys(nside=32, mjd0=None):
    """
    Generate a list of surveys for executing in year 1
    """

    nside = nside
    filters = ['u', 'g', 'r', 'i', 'z', 'y']

    target_map = large_target_map(nside, dec_max=34.3)
    norm_factor = fs.calc_norm_factor({'r': target_map})

    # set up a cloud map
    cloud_map = target_map * 0 + 0.7

    # Set up map m5-depth limits:
    m5_limits = {}
    percentile_cut = 0.7
    m52per = sb.M5percentiles()
    for filtername in filters:
        m5_limits[filtername] = m52per.percentile2m5map(percentile_cut,
                                                        filtername=filtername,
                                                        nside=nside)

    surveys = []

    for filtername in filters:
        bfs = []
        bfs.append(
            fs.M5_diff_basis_function(filtername=filtername, nside=nside))
        bfs.append(
            fs.Target_map_basis_function(filtername=filtername,
                                         target_map=target_map,
                                         out_of_bounds_val=hp.UNSEEN,
                                         nside=nside,
                                         norm_factor=norm_factor))

        bfs.append(
            fs.Slewtime_basis_function(filtername=filtername, nside=nside))
        bfs.append(fs.Strict_filter_basis_function(filtername=filtername))
        bfs.append(
            fs.Zenith_shadow_mask_basis_function(nside=nside,
                                                 shadow_minutes=0.,
                                                 max_alt=76.))
        bfs.append(
            fs.Moon_avoidance_basis_function(nside=nside, moon_distance=40.))
        bfs.append(
            fs.Bulk_cloud_basis_function(max_cloud_map=cloud_map, nside=nside))
        weights = [3.0, 0.3, 3., 3., 0, 0., 0.]
        # add in some constriants to make sure we only observe in good conditions and shut off after 3 good ones
        bfs.append(
            Limit_m5_map_basis_function(m5_limits[filtername],
                                        nside=nside,
                                        filtername=filtername))
        bfs.append(
            Seeing_limit_basis_function(nside=nside, filtername=filtername))
        bfs.append(Time_limit_basis_function(day_max=365.25))
        # XXX--Do I need a m5-depth limit on here too?
        bfs.append(
            Nvis_limit_basis_function(nside=nside,
                                      filtername=filtername,
                                      n_limit=3,
                                      seeing_limit=1.2,
                                      time_lag=0.45,
                                      m5_limit_map=m5_limits[filtername]))
        weights.extend([0, 0, 0, 0])
        #weights.extend([0., 0., 0.])

        weights = np.array(weights)
        # Might want to try ignoring DD observations here, so the DD area gets covered normally--DONE
        surveys.append(
            fs.Greedy_survey_fields(bfs,
                                    weights,
                                    block_size=1,
                                    filtername=filtername,
                                    dither=True,
                                    nside=nside,
                                    ignore_obs='DD',
                                    survey_name='templates'))

    # Do we want to cover all the potential area LSST could observe? In case a GW goes off
    # in the north not in the NES.
    return surveys
Exemplo n.º 4
0
def generate_blob_surveys(nside):

    target_maps, norm_factor = generate_target_maps(nside)

    # set up a cloud map
    cloud_map = target_maps['r'][0] * 0 + 0.7

    # Set up observations to be taken in blocks
    filter1s = ['u', 'g', 'r', 'i', 'z', 'y']
    filter2s = [None, 'g', 'r', 'i', None, None]

    pair_surveys = []
    for filtername, filtername2 in zip(filter1s, filter2s):
        bfs = []
        bfs.append(
            fs.M5_diff_basis_function(filtername=filtername, nside=nside))
        if filtername2 is not None:
            bfs.append(
                fs.M5_diff_basis_function(filtername=filtername2, nside=nside))
        bfs.append(
            fs.Target_map_basis_function(filtername=filtername,
                                         target_map=target_maps[filtername],
                                         out_of_bounds_val=hp.UNSEEN,
                                         nside=nside,
                                         norm_factor=norm_factor))
        if filtername2 is not None:
            bfs.append(
                fs.Target_map_basis_function(
                    filtername=filtername2,
                    target_map=target_maps[filtername2],
                    out_of_bounds_val=hp.UNSEEN,
                    nside=nside,
                    norm_factor=norm_factor))
        bfs.append(
            fs.Slewtime_basis_function(filtername=filtername, nside=nside))
        bfs.append(fs.Strict_filter_basis_function(filtername=filtername))
        # Masks, give these 0 weight
        bfs.append(
            fs.Zenith_shadow_mask_basis_function(nside=nside,
                                                 shadow_minutes=60.,
                                                 max_alt=76.))
        bfs.append(
            fs.Moon_avoidance_basis_function(nside=nside, moon_distance=40.))
        bfs.append(
            fs.Bulk_cloud_basis_function(max_cloud_map=cloud_map, nside=nside))
        weights = np.array([3.0, 3.0, .3, .3, 3., 3., 0., 0., 0.])
        if filtername2 is None:
            # Need to scale weights up so filter balancing still works properly.
            weights = np.array([6.0, 0.6, 3., 3., 0., 0., 0.])
        if filtername2 is None:
            survey_name = 'blob, %s' % filtername
        else:
            survey_name = 'blob, %s%s' % (filtername, filtername2)
        pair_surveys.append(
            fs.Blob_survey(bfs,
                           weights,
                           filtername=filtername,
                           filter2=filtername2,
                           survey_note=survey_name,
                           ignore_obs='DD'))

    return pair_surveys
Exemplo n.º 5
0
import numpy as np
import lsst.sims.featureScheduler as fs
from lsst.sims.speedObservatory import Speed_observatory
import healpy as hp

if __name__ == "__main__":

    survey_length = 5  # days
    # Define what we want the final visit ratio map to look like
    target_map = fs.standard_goals()['r']

    bfs = []
    bfs.append(fs.Depth_percentile_basis_function())
    bfs.append(fs.Target_map_basis_function(target_map=target_map))
    bfs.append(fs.Quadrant_basis_function())
    bfs.append(fs.Slewtime_basis_function())

    weights = np.array([.5, 1., 1., 1.])
    survey = fs.Simple_greedy_survey_fields(bfs, weights, block_size=1)
    scheduler = fs.Core_scheduler([survey])

    observatory = Speed_observatory()
    observatory, scheduler, observations = fs.sim_runner(
        observatory,
        scheduler,
        survey_length=survey_length,
        filename='marching_d%i.db' % survey_length,
        delete_past=True)

# block_size=10, surveylength of 365 had runtime of 163 min. and got 0.26e6 observations. So, 10 years would be 27 hours.
# Going to block_size=1, runtime of 211 min, and 0.33e6 observations. So, 35 hours. Not too shabby!