Exemplo n.º 1
0
def scienceRadarBatch(colmap=None,
                      runName='opsim',
                      extraSql=None,
                      extraMetadata=None,
                      nside=64,
                      benchmarkArea=18000,
                      benchmarkNvisits=825,
                      DDF=True):
    """A batch of metrics for looking at survey performance relative to the SRD and the main
    science drivers of LSST.

    Parameters
    ----------

    """
    # Hide dependencies
    from mafContrib.LSSObsStrategy.galaxyCountsMetric_extended import GalaxyCountsMetric_extended
    from mafContrib import Plasticc_metric, plasticc_slicer, load_plasticc_lc, TDEsAsciiMetric

    if colmap is None:
        colmap = ColMapDict('fbs')

    if extraSql is None:
        extraSql = ''
    if extraSql == '':
        joiner = ''
    else:
        joiner = ' and '

    bundleList = []
    # Get some standard per-filter coloring and sql constraints
    filterlist, colors, filterorders, filtersqls, filtermetadata = filterList(
        all=False, extraSql=extraSql, extraMetadata=extraMetadata)

    standardStats = standardSummary(withCount=False)

    healslicer = slicers.HealpixSlicer(nside=nside)
    subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    # Load up the plastic light curves
    models = ['SNIa-normal', 'KN']
    plasticc_models_dict = {}
    for model in models:
        plasticc_models_dict[model] = list(
            load_plasticc_lc(model=model).values())

    #########################
    # SRD, DM, etc
    #########################
    fOb = fOBatch(runName=runName,
                  colmap=colmap,
                  extraSql=extraSql,
                  extraMetadata=extraMetadata,
                  benchmarkArea=benchmarkArea,
                  benchmarkNvisits=benchmarkNvisits)
    astromb = astrometryBatch(runName=runName,
                              colmap=colmap,
                              extraSql=extraSql,
                              extraMetadata=extraMetadata)
    rapidb = rapidRevisitBatch(runName=runName,
                               colmap=colmap,
                               extraSql=extraSql,
                               extraMetadata=extraMetadata)

    # loop through and modify the display dicts - set SRD as group and their previous 'group' as the subgroup
    temp_list = []
    for key in fOb:
        temp_list.append(fOb[key])
    for key in astromb:
        temp_list.append(astromb[key])
    for key in rapidb:
        temp_list.append(rapidb[key])
    for metricb in temp_list:
        metricb.displayDict['subgroup'] = metricb.displayDict['group'].replace(
            'SRD', '').lstrip(' ')
        metricb.displayDict['group'] = 'SRD'
    bundleList.extend(temp_list)

    displayDict = {
        'group': 'SRD',
        'subgroup': 'Year Coverage',
        'order': 0,
        'caption': 'Number of years with observations.'
    }
    slicer = slicers.HealpixSlicer(nside=nside)
    metric = metrics.YearCoverageMetric()
    for f in filterlist:
        plotDict = {'colorMin': 7, 'colorMax': 10, 'color': colors[f]}
        summary = [
            metrics.AreaSummaryMetric(area=18000,
                                      reduce_func=np.mean,
                                      decreasing=True,
                                      metricName='N Seasons (18k) %s' % f)
        ]
        bundleList.append(
            mb.MetricBundle(metric,
                            slicer,
                            filtersqls[f],
                            plotDict=plotDict,
                            metadata=filtermetadata[f],
                            displayDict=displayDict,
                            summaryMetrics=summary))

    #########################
    # Solar System
    #########################
    # Generally, we need to run Solar System metrics separately; they're a multi-step process.

    #########################
    # Cosmology
    #########################

    displayDict = {
        'group': 'Cosmology',
        'subgroup': 'Galaxy Counts',
        'order': 0,
        'caption': None
    }
    plotDict = {'percentileClip': 95., 'nTicks': 5}
    sql = extraSql + joiner + 'filter="i"'
    metadata = combineMetadata(extraMetadata, 'i band')
    metric = GalaxyCountsMetric_extended(filterBand='i',
                                         redshiftBin='all',
                                         nside=nside)
    summary = [
        metrics.AreaSummaryMetric(area=18000,
                                  reduce_func=np.sum,
                                  decreasing=True,
                                  metricName='N Galaxies (18k)')
    ]
    summary.append(metrics.SumMetric(metricName='N Galaxies (all)'))
    # make sure slicer has cache off
    slicer = slicers.HealpixSlicer(nside=nside, useCache=False)
    bundle = mb.MetricBundle(metric,
                             slicer,
                             sql,
                             plotDict=plotDict,
                             metadata=metadata,
                             displayDict=displayDict,
                             summaryMetrics=summary,
                             plotFuncs=subsetPlots)
    bundleList.append(bundle)
    displayDict['order'] += 1

    # let's put Type Ia SN in here
    displayDict['subgroup'] = 'SNe Ia'
    # XXX-- use the light curves from PLASTICC here
    displayDict['caption'] = 'Fraction of normal SNe Ia'
    sql = extraSql
    slicer = plasticc_slicer(plcs=plasticc_models_dict['SNIa-normal'],
                             seed=42,
                             badval=0)
    metric = Plasticc_metric(metricName='SNIa')
    # Set the maskval so that we count missing objects as zero.
    summary_stats = [metrics.MeanMetric(maskVal=0)]
    plotFuncs = [plots.HealpixSkyMap()]
    bundle = mb.MetricBundle(metric,
                             slicer,
                             sql,
                             runName=runName,
                             summaryMetrics=summary_stats,
                             plotFuncs=plotFuncs,
                             metadata=extraMetadata,
                             displayDict=displayDict)
    bundleList.append(bundle)
    displayDict['order'] += 1

    displayDict['subgroup'] = 'Camera Rotator'
    displayDict[
        'caption'] = 'Kuiper statistic (0 is uniform, 1 is delta function) of the '
    slicer = slicers.HealpixSlicer(nside=nside)
    metric1 = metrics.KuiperMetric('rotSkyPos')
    metric2 = metrics.KuiperMetric('rotTelPos')
    for f in filterlist:
        for m in [metric1, metric2]:
            plotDict = {'color': colors[f]}
            displayDict['order'] = filterorders[f]
            displayDict['caption'] += f"{m.colname} for visits in {f} band."
            bundleList.append(
                mb.MetricBundle(m,
                                slicer,
                                filtersqls[f],
                                plotDict=plotDict,
                                displayDict=displayDict,
                                summaryMetrics=standardStats,
                                plotFuncs=subsetPlots))

    # XXX--need some sort of metric for weak lensing

    #########################
    # Variables and Transients
    #########################
    displayDict = {
        'group': 'Variables/Transients',
        'subgroup': 'Periodic Stars',
        'order': 0,
        'caption': None
    }
    for period in [
            0.5,
            1,
            2,
    ]:
        for magnitude in [21., 24.]:
            amplitudes = [0.05, 0.1, 1.0]
            periods = [period] * len(amplitudes)
            starMags = [magnitude] * len(amplitudes)

            plotDict = {
                'nTicks': 3,
                'colorMin': 0,
                'colorMax': 3,
                'xMin': 0,
                'xMax': 3
            }
            metadata = combineMetadata(
                'P_%.1f_Mag_%.0f_Amp_0.05-0.1-1' % (period, magnitude),
                extraMetadata)
            sql = None
            displayDict['caption'] = 'Metric evaluates if a periodic signal of period %.1f days could ' \
                                     'be detected for an r=%i star. A variety of amplitudes of periodicity ' \
                                     'are tested: [1, 0.1, and 0.05] mag amplitudes, which correspond to ' \
                                     'metric values of [1, 2, or 3]. ' % (period, magnitude)
            metric = metrics.PeriodicDetectMetric(periods=periods,
                                                  starMags=starMags,
                                                  amplitudes=amplitudes,
                                                  metricName='PeriodDetection')
            bundle = mb.MetricBundle(metric,
                                     healslicer,
                                     sql,
                                     metadata=metadata,
                                     displayDict=displayDict,
                                     plotDict=plotDict,
                                     plotFuncs=subsetPlots,
                                     summaryMetrics=standardStats)
            bundleList.append(bundle)
            displayDict['order'] += 1

    # XXX add some PLASTICC metrics for kilovnova and tidal disruption events.
    displayDict['subgroup'] = 'KN'
    displayDict['caption'] = 'Fraction of Kilonova (from PLASTICC)'
    displayDict['order'] = 0
    slicer = plasticc_slicer(plcs=plasticc_models_dict['KN'],
                             seed=43,
                             badval=0)
    metric = Plasticc_metric(metricName='KN')
    plotFuncs = [plots.HealpixSkyMap()]
    summary_stats = [metrics.MeanMetric(maskVal=0)]
    bundle = mb.MetricBundle(metric,
                             slicer,
                             extraSql,
                             runName=runName,
                             summaryMetrics=summary_stats,
                             plotFuncs=plotFuncs,
                             metadata=extraMetadata,
                             displayDict=displayDict)
    bundleList.append(bundle)

    # Tidal Disruption Events
    displayDict['subgroup'] = 'TDE'
    displayDict[
        'caption'] = 'Fraction of TDE lightcurves that could be identified, outside of DD fields'
    detectSNR = {'u': 5, 'g': 5, 'r': 5, 'i': 5, 'z': 5, 'y': 5}

    # light curve parameters
    epochStart = -22
    peakEpoch = 0
    nearPeakT = 10
    postPeakT = 14  # two weeks
    nPhaseCheck = 1

    # condition parameters
    nObsTotal = {'u': 0, 'g': 0, 'r': 0, 'i': 0, 'z': 0, 'y': 0}
    nObsPrePeak = 1
    nObsNearPeak = {'u': 0, 'g': 0, 'r': 0, 'i': 0, 'z': 0, 'y': 0}
    nFiltersNearPeak = 3
    nObsPostPeak = 0
    nFiltersPostPeak = 2

    metric = TDEsAsciiMetric(asciifile=None,
                             detectSNR=detectSNR,
                             epochStart=epochStart,
                             peakEpoch=peakEpoch,
                             nearPeakT=nearPeakT,
                             postPeakT=postPeakT,
                             nPhaseCheck=nPhaseCheck,
                             nObsTotal=nObsTotal,
                             nObsPrePeak=nObsPrePeak,
                             nObsNearPeak=nObsNearPeak,
                             nFiltersNearPeak=nFiltersNearPeak,
                             nObsPostPeak=nObsPostPeak,
                             nFiltersPostPeak=nFiltersPostPeak)
    slicer = slicers.HealpixSlicer(nside=32)
    sql = extraSql + joiner + "note not like '%DD%'"
    md = extraMetadata
    if md is None:
        md = " NonDD"
    else:
        md += 'NonDD'
    bundle = mb.MetricBundle(metric,
                             slicer,
                             sql,
                             runName=runName,
                             summaryMetrics=standardStats,
                             plotFuncs=plotFuncs,
                             metadata=md,
                             displayDict=displayDict)
    bundleList.append(bundle)

    # XXX -- would be good to add some microlensing events, for both MW and LMC/SMC.

    #########################
    # Milky Way
    #########################

    displayDict = {'group': 'Milky Way', 'subgroup': ''}

    displayDict['subgroup'] = 'N stars'
    slicer = slicers.HealpixSlicer(nside=nside, useCache=False)
    sum_stats = [metrics.SumMetric(metricName='Total N Stars')]
    for f in filterlist:
        displayDict['order'] = filterorders[f]
        displayDict['caption'] = 'Number of stars in %s band with an measurement error due to crowding ' \
                                 'of less than 0.1 mag' % f
        # Configure the NstarsMetric - note 'filtername' refers to the filter in which to evaluate crowding
        metric = metrics.NstarsMetric(crowding_error=0.1,
                                      filtername='r',
                                      seeingCol=colmap['seeingGeom'],
                                      m5Col=colmap['fiveSigmaDepth'])
        plotDict = {'nTicks': 5, 'logScale': True, 'colorMin': 100}
        bundle = mb.MetricBundle(metric,
                                 slicer,
                                 filtersqls[f],
                                 runName=runName,
                                 summaryMetrics=sum_stats,
                                 plotFuncs=subsetPlots,
                                 plotDict=plotDict,
                                 displayDict=displayDict)
        bundleList.append(bundle)

    #########################
    # DDF
    #########################
    if DDF:
        # Hide this import to avoid adding a dependency.
        from lsst.sims.featureScheduler.surveys import generate_dd_surveys, Deep_drilling_survey
        ddf_surveys = generate_dd_surveys()

        # Add on the Euclid fields
        # XXX--to update. Should have a spot where all the DDF locations are stored.
        ddf_surveys.append(
            Deep_drilling_survey([], 58.97, -49.28, survey_name='DD:EDFSa'))
        ddf_surveys.append(
            Deep_drilling_survey([], 63.6, -47.60, survey_name='DD:EDFSb'))

        # For doing a high-res sampling of the DDF for co-adds
        ddf_radius = 1.8  # Degrees
        ddf_nside = 512

        ra, dec = hpid2RaDec(ddf_nside, np.arange(hp.nside2npix(ddf_nside)))

        displayDict = {'group': 'DDF depths', 'subgroup': None}

        for survey in ddf_surveys:
            displayDict['subgroup'] = survey.survey_name
            # Crop off the u-band only DDF
            if survey.survey_name[0:4] != 'DD:u':
                dist_to_ddf = angularSeparation(ra, dec, np.degrees(survey.ra),
                                                np.degrees(survey.dec))
                goodhp = np.where(dist_to_ddf <= ddf_radius)
                slicer = slicers.UserPointsSlicer(ra=ra[goodhp],
                                                  dec=dec[goodhp],
                                                  useCamera=False)
                for f in filterlist:
                    metric = metrics.Coaddm5Metric(
                        metricName=survey.survey_name + ', ' + f)
                    summary = [
                        metrics.MedianMetric(metricName='Median depth ' +
                                             survey.survey_name + ', ' + f)
                    ]
                    plotDict = {'color': colors[f]}
                    sql = filtersqls[f]
                    displayDict['order'] = filterorders[f]
                    displayDict['caption'] = 'Coadded m5 depth in %s band.' % (
                        f)
                    bundle = mb.MetricBundle(metric,
                                             slicer,
                                             sql,
                                             metadata=filtermetadata[f],
                                             displayDict=displayDict,
                                             summaryMetrics=summary,
                                             plotFuncs=[],
                                             plotDict=plotDict)
                    bundleList.append(bundle)

        displayDict = {'group': 'DDF Transients', 'subgroup': None}
        for survey in ddf_surveys:
            displayDict['subgroup'] = survey.survey_name
            if survey.survey_name[0:4] != 'DD:u':
                slicer = plasticc_slicer(
                    plcs=plasticc_models_dict['SNIa-normal'],
                    seed=42,
                    ra_cen=survey.ra,
                    dec_cen=survey.dec,
                    radius=np.radians(3.),
                    useCamera=False)
                metric = Plasticc_metric(metricName=survey.survey_name +
                                         ' SNIa')
                sql = extraSql
                summary_stats = [metrics.MeanMetric(maskVal=0)]
                plotFuncs = [plots.HealpixSkyMap()]
                bundle = mb.MetricBundle(metric,
                                         slicer,
                                         sql,
                                         runName=runName,
                                         summaryMetrics=summary_stats,
                                         plotFuncs=plotFuncs,
                                         metadata=extraMetadata,
                                         displayDict=displayDict)
                bundleList.append(bundle)
                displayDict['order'] = 10

    # Set the runName for all bundles and return the bundleDict.
    for b in bundleList:
        b.setRunName(runName)
    bundleDict = mb.makeBundlesDictFromList(bundleList)

    return bundleDict
Exemplo n.º 2
0
def scienceRadarBatch(colmap=None,
                      runName='',
                      extraSql=None,
                      extraMetadata=None,
                      nside=64,
                      benchmarkArea=18000,
                      benchmarkNvisits=825,
                      DDF=True):
    """A batch of metrics for looking at survey performance relative to the SRD and the main
    science drivers of LSST.

    Parameters
    ----------

    """
    # Hide dependencies
    from mafContrib.LSSObsStrategy.galaxyCountsMetric_extended import GalaxyCountsMetric_extended
    from mafContrib import Plasticc_metric, plasticc_slicer, load_plasticc_lc

    if colmap is None:
        colmap = ColMapDict('opsimV4')

    if extraSql is None:
        extraSql = ''
    if extraSql == '':
        joiner = ''
    else:
        joiner = ' and '

    bundleList = []

    healslicer = slicers.HealpixSlicer(nside=nside)
    subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    # Load up the plastic light curves
    models = ['SNIa-normal', 'KN']
    plasticc_models_dict = {}
    for model in models:
        plasticc_models_dict[model] = list(
            load_plasticc_lc(model=model).values())

    #########################
    # SRD, DM, etc
    #########################
    sql = extraSql
    displayDict = {
        'group': 'SRD',
        'subgroup': 'fO',
        'order': 0,
        'caption': None
    }
    metric = metrics.CountMetric(col=colmap['mjd'], metricName='fO')
    plotDict = {
        'xlabel': 'Number of Visits',
        'Asky': benchmarkArea,
        'Nvisit': benchmarkNvisits,
        'xMin': 0,
        'xMax': 1500
    }
    summaryMetrics = [
        metrics.fOArea(nside=nside,
                       norm=False,
                       metricName='fOArea',
                       Asky=benchmarkArea,
                       Nvisit=benchmarkNvisits),
        metrics.fOArea(nside=nside,
                       norm=True,
                       metricName='fOArea/benchmark',
                       Asky=benchmarkArea,
                       Nvisit=benchmarkNvisits),
        metrics.fONv(nside=nside,
                     norm=False,
                     metricName='fONv',
                     Asky=benchmarkArea,
                     Nvisit=benchmarkNvisits),
        metrics.fONv(nside=nside,
                     norm=True,
                     metricName='fONv/benchmark',
                     Asky=benchmarkArea,
                     Nvisit=benchmarkNvisits)
    ]
    caption = 'The FO metric evaluates the overall efficiency of observing. '
    caption += (
        'foNv: out of %.2f sq degrees, the area receives at least X and a median of Y visits '
        '(out of %d, if compared to benchmark). ' %
        (benchmarkArea, benchmarkNvisits))
    caption += ('fOArea: this many sq deg (out of %.2f sq deg if compared '
                'to benchmark) receives at least %d visits. ' %
                (benchmarkArea, benchmarkNvisits))
    displayDict['caption'] = caption
    bundle = mb.MetricBundle(metric,
                             healslicer,
                             sql,
                             plotDict=plotDict,
                             displayDict=displayDict,
                             summaryMetrics=summaryMetrics,
                             plotFuncs=[plots.FOPlot()])
    bundleList.append(bundle)
    displayDict['order'] += 1

    displayDict = {
        'group': 'SRD',
        'subgroup': 'Gaps',
        'order': 0,
        'caption': None
    }
    plotDict = {'percentileClip': 95.}
    for filtername in 'ugrizy':
        sql = extraSql + joiner + 'filter ="%s"' % filtername
        metric = metrics.MaxGapMetric()
        summaryMetrics = [
            metrics.PercentileMetric(
                percentile=95,
                metricName='95th percentile of Max gap, %s' % filtername)
        ]
        bundle = mb.MetricBundle(metric,
                                 healslicer,
                                 sql,
                                 plotFuncs=subsetPlots,
                                 summaryMetrics=summaryMetrics,
                                 displayDict=displayDict,
                                 plotDict=plotDict)
        bundleList.append(bundle)
        displayDict['order'] += 1

    #########################
    # Solar System
    #########################

    # XXX -- may want to do Solar system seperatly

    # XXX--fraction of NEOs detected (assume some nominal size and albido)
    # XXX -- fraction of MBAs detected
    # XXX -- fraction of KBOs detected
    # XXX--any others? Planet 9s? Comets? Neptune Trojans?

    #########################
    # Cosmology
    #########################

    displayDict = {
        'group': 'Cosmology',
        'subgroup': 'galaxy counts',
        'order': 0,
        'caption': None
    }
    plotDict = {'percentileClip': 95.}
    sql = extraSql + joiner + 'filter="i"'
    metric = GalaxyCountsMetric_extended(filterBand='i',
                                         redshiftBin='all',
                                         nside=nside)
    summary = [
        metrics.AreaSummaryMetric(area=18000,
                                  reduce_func=np.sum,
                                  decreasing=True,
                                  metricName='N Galaxies (WFD)')
    ]
    summary.append(metrics.SumMetric(metricName='N Galaxies (all)'))
    # make sure slicer has cache off
    slicer = slicers.HealpixSlicer(nside=nside, useCache=False)
    bundle = mb.MetricBundle(metric,
                             slicer,
                             sql,
                             plotDict=plotDict,
                             displayDict=displayDict,
                             summaryMetrics=summary,
                             plotFuncs=subsetPlots)
    bundleList.append(bundle)
    displayDict['order'] += 1

    # let's put Type Ia SN in here
    displayDict['subgroup'] = 'SNe Ia'
    metadata = ''
    # XXX-- use the light curves from PLASTICC here
    displayDict['Caption'] = 'Fraction of normal SNe Ia'
    sql = ''
    slicer = plasticc_slicer(plcs=plasticc_models_dict['SNIa-normal'],
                             seed=42,
                             badval=0)
    metric = Plasticc_metric(metricName='SNIa')
    # Set the maskval so that we count missing objects as zero.
    summary_stats = [metrics.MeanMetric(maskVal=0)]
    plotFuncs = [plots.HealpixSkyMap()]
    bundle = mb.MetricBundle(metric,
                             slicer,
                             sql,
                             runName=runName,
                             summaryMetrics=summary_stats,
                             plotFuncs=plotFuncs,
                             metadata=metadata,
                             displayDict=displayDict)
    bundleList.append(bundle)
    displayDict['order'] += 1

    # XXX--need some sort of metric for weak lensing and camera rotation.

    #########################
    # Variables and Transients
    #########################
    displayDict = {
        'group': 'Variables and Transients',
        'subgroup': 'Periodic Stars',
        'order': 0,
        'caption': None
    }
    periods = [0.1, 0.5, 1., 2., 5., 10., 20.]  # days

    plotDict = {}
    metadata = ''
    sql = extraSql
    displayDict[
        'Caption'] = 'Measure of how well a periodic signal can be measured combining amplitude and phase coverage. 1 is perfect, 0 is no way to fit'
    for period in periods:
        summary = metrics.PercentileMetric(
            percentile=10.,
            metricName='10th %%-ile Periodic Quality, Period=%.1f days' %
            period)
        metric = metrics.PeriodicQualityMetric(
            period=period,
            starMag=20.,
            metricName='Periodic Stars, P=%.1f d' % period)
        bundle = mb.MetricBundle(metric,
                                 healslicer,
                                 sql,
                                 metadata=metadata,
                                 displayDict=displayDict,
                                 plotDict=plotDict,
                                 plotFuncs=subsetPlots,
                                 summaryMetrics=summary)
        bundleList.append(bundle)
        displayDict['order'] += 1

    # XXX add some PLASTICC metrics for kilovnova and tidal disruption events.
    displayDict['subgroup'] = 'KN'
    displayDict['caption'] = 'Fraction of Kilonova (from PLASTICC)'
    sql = ''
    slicer = plasticc_slicer(plcs=plasticc_models_dict['KN'],
                             seed=43,
                             badval=0)
    metric = Plasticc_metric(metricName='KN')
    summary_stats = [metrics.MeanMetric(maskVal=0)]
    plotFuncs = [plots.HealpixSkyMap()]
    bundle = mb.MetricBundle(metric,
                             slicer,
                             sql,
                             runName=runName,
                             summaryMetrics=summary_stats,
                             plotFuncs=plotFuncs,
                             metadata=metadata,
                             displayDict=displayDict)
    bundleList.append(bundle)

    displayDict['order'] += 1

    # XXX -- would be good to add some microlensing events, for both MW and LMC/SMC.

    #########################
    # Milky Way
    #########################

    # Let's do the proper motion, parallax, and DCR degen of a 20nd mag star
    rmag = 20.
    displayDict = {
        'group': 'Milky Way',
        'subgroup': 'Astrometry',
        'order': 0,
        'caption': None
    }

    sql = extraSql
    metadata = ''
    plotDict = {'percentileClip': 95.}
    metric = metrics.ParallaxMetric(metricName='Parallax Error r=%.1f' %
                                    (rmag),
                                    rmag=rmag,
                                    seeingCol=colmap['seeingGeom'],
                                    filterCol=colmap['filter'],
                                    m5Col=colmap['fiveSigmaDepth'],
                                    normalize=False)
    summary = [
        metrics.AreaSummaryMetric(area=18000,
                                  reduce_func=np.median,
                                  decreasing=False,
                                  metricName='Median Parallax Error (WFD)')
    ]
    summary.append(
        metrics.PercentileMetric(percentile=95,
                                 metricName='95th Percentile Parallax Error'))
    bundle = mb.MetricBundle(metric,
                             healslicer,
                             sql,
                             metadata=metadata,
                             displayDict=displayDict,
                             plotDict=plotDict,
                             plotFuncs=subsetPlots,
                             summaryMetrics=summary)
    bundleList.append(bundle)
    displayDict['order'] += 1

    metric = metrics.ProperMotionMetric(
        metricName='Proper Motion Error r=%.1f' % rmag,
        rmag=rmag,
        m5Col=colmap['fiveSigmaDepth'],
        mjdCol=colmap['mjd'],
        filterCol=colmap['filter'],
        seeingCol=colmap['seeingGeom'],
        normalize=False)
    summary = [
        metrics.AreaSummaryMetric(
            area=18000,
            reduce_func=np.median,
            decreasing=False,
            metricName='Median Proper Motion Error (WFD)')
    ]
    summary.append(
        metrics.PercentileMetric(
            metricName='95th Percentile Proper Motion Error'))
    bundle = mb.MetricBundle(metric,
                             healslicer,
                             sql,
                             metadata=metadata,
                             displayDict=displayDict,
                             plotDict=plotDict,
                             summaryMetrics=summary,
                             plotFuncs=subsetPlots)
    bundleList.append(bundle)
    displayDict['order'] += 1

    metric = metrics.ParallaxDcrDegenMetric(
        metricName='Parallax-DCR degeneracy r=%.1f' % (rmag),
        rmag=rmag,
        seeingCol=colmap['seeingEff'],
        filterCol=colmap['filter'],
        m5Col=colmap['fiveSigmaDepth'])
    caption = 'Correlation between parallax offset magnitude and hour angle for a r=%.1f star.' % (
        rmag)
    caption += ' (0 is good, near -1 or 1 is bad).'
    # XXX--not sure what kind of summary to do here
    summary = [metrics.MeanMetric(metricName='Mean DCR Degeneracy')]
    bundle = mb.MetricBundle(metric,
                             healslicer,
                             sql,
                             metadata=metadata,
                             displayDict=displayDict,
                             summaryMetrics=summary,
                             plotFuncs=subsetPlots)
    bundleList.append(bundle)
    displayDict['order'] += 1

    for b in bundleList:
        b.setRunName(runName)

    #########################
    # DDF
    #########################
    ddf_time_bundleDicts = []
    if DDF:
        # Hide this import to avoid adding a dependency.
        from lsst.sims.featureScheduler.surveys import generate_dd_surveys
        ddf_surveys = generate_dd_surveys()
        # For doing a high-res sampling of the DDF for co-adds
        ddf_radius = 1.8  # Degrees
        ddf_nside = 512

        ra, dec = hpid2RaDec(ddf_nside, np.arange(hp.nside2npix(ddf_nside)))

        displayDict = {
            'group': 'DDF depths',
            'subgroup': None,
            'order': 0,
            'caption': None
        }

        # Run the inter and intra gaps at the center of the DDFs
        for survey in ddf_surveys:
            slicer = slicers.UserPointsSlicer(ra=np.degrees(survey.ra),
                                              dec=np.degrees(survey.dec),
                                              useCamera=False)
            ddf_time_bundleDicts.append(
                interNight(colmap=colmap,
                           slicer=slicer,
                           runName=runName,
                           nside=64,
                           extraSql='note="%s"' % survey.survey_name,
                           subgroup=survey.survey_name)[0])
            ddf_time_bundleDicts.append(
                intraNight(colmap=colmap,
                           slicer=slicer,
                           runName=runName,
                           nside=64,
                           extraSql='note="%s"' % survey.survey_name,
                           subgroup=survey.survey_name)[0])

        for survey in ddf_surveys:
            displayDict['subgroup'] = survey.survey_name
            # Crop off the u-band only DDF
            if survey.survey_name[0:4] != 'DD:u':
                dist_to_ddf = angularSeparation(ra, dec, np.degrees(survey.ra),
                                                np.degrees(survey.dec))
                goodhp = np.where(dist_to_ddf <= ddf_radius)
                slicer = slicers.UserPointsSlicer(ra=ra[goodhp],
                                                  dec=dec[goodhp],
                                                  useCamera=False)
                for filtername in ['u', 'g', 'r', 'i', 'z', 'y']:
                    metric = metrics.Coaddm5Metric(
                        metricName=survey.survey_name + ', ' + filtername)
                    summary = [
                        metrics.MedianMetric(metricName='median depth ' +
                                             survey.survey_name + ', ' +
                                             filtername)
                    ]
                    sql = extraSql + joiner + 'filter = "%s"' % filtername
                    bundle = mb.MetricBundle(metric,
                                             slicer,
                                             sql,
                                             metadata=metadata,
                                             displayDict=displayDict,
                                             summaryMetrics=summary,
                                             plotFuncs=[])
                    bundleList.append(bundle)
                    displayDict['order'] += 1

        displayDict = {
            'group': 'DDF Transients',
            'subgroup': None,
            'order': 0,
            'caption': None
        }
        for survey in ddf_surveys:
            displayDict['subgroup'] = survey.survey_name
            if survey.survey_name[0:4] != 'DD:u':
                slicer = plasticc_slicer(
                    plcs=plasticc_models_dict['SNIa-normal'],
                    seed=42,
                    ra_cen=survey.ra,
                    dec_cen=survey.dec,
                    radius=np.radians(3.),
                    useCamera=False)
                metric = Plasticc_metric(metricName=survey.survey_name +
                                         ' SNIa')
                sql = ''
                summary_stats = [metrics.MeanMetric(maskVal=0)]
                plotFuncs = [plots.HealpixSkyMap()]
                bundle = mb.MetricBundle(metric,
                                         slicer,
                                         sql,
                                         runName=runName,
                                         summaryMetrics=summary_stats,
                                         plotFuncs=plotFuncs,
                                         metadata=metadata,
                                         displayDict=displayDict)
                bundleList.append(bundle)

    displayDict['order'] += 1

    for b in bundleList:
        b.setRunName(runName)

    bundleDict = mb.makeBundlesDictFromList(bundleList)

    intraDict = intraNight(colmap=colmap,
                           runName=runName,
                           nside=nside,
                           extraSql=extraSql,
                           extraMetadata=extraMetadata)[0]
    interDict = interNight(colmap=colmap,
                           runName=runName,
                           nside=nside,
                           extraSql=extraSql,
                           extraMetadata=extraMetadata)[0]

    bundleDict.update(intraDict)
    bundleDict.update(interDict)
    for ddf_time in ddf_time_bundleDicts:
        bundleDict.update(ddf_time)

    return bundleDict
Exemplo n.º 3
0
def astrometryBatch(colmap=None, runName='opsim',
                    extraSql=None, extraMetadata=None,
                    nside=64, ditherStacker=None, ditherkwargs=None):
    """Metrics for evaluating proper motion and parallax.

    Parameters
    ----------
    colmap : dict or None, opt
        A dictionary with a mapping of column names. Default will use OpsimV4 column names.
    runName : str, opt
        The name of the simulated survey. Default is "opsim".
    nside : int, opt
        Nside for the healpix slicer. Default 64.
    extraSql : str or None, opt
        Additional sql constraint to apply to all metrics.
    extraMetadata : str or None, opt
        Additional metadata to apply to all results.
    ditherStacker: str or lsst.sims.maf.stackers.BaseDitherStacker
        Optional dither stacker to use to define ra/dec columns.
    ditherkwargs: dict, opt
        Optional dictionary of kwargs for the dither stacker.

    Returns
    -------
    metricBundleDict
    """
    if colmap is None:
        colmap = ColMapDict('fbs')
    bundleList = []

    sql = ''
    metadata = 'All visits'
    # Add additional sql constraint (such as wfdWhere) and metadata, if provided.
    if (extraSql is not None) and (len(extraSql) > 0):
        sql = extraSql
        if extraMetadata is None:
            metadata = extraSql.replace('filter =', '').replace('filter=', '')
            metadata = metadata.replace('"', '').replace("'", '')
    if extraMetadata is not None:
        metadata = extraMetadata

    subgroup = metadata

    raCol, decCol, degrees, ditherStacker, ditherMeta = radecCols(ditherStacker, colmap, ditherkwargs)
    # Don't want dither info in subgroup (too long), but do want it in bundle name.
    metadata = combineMetadata(metadata, ditherMeta)

    rmags_para = [22.4, 24.0]
    rmags_pm = [20.5, 24.0]

    # Set up parallax/dcr stackers.
    parallaxStacker = stackers.ParallaxFactorStacker(raCol=raCol, decCol=decCol,
                                                     dateCol=colmap['mjd'], degrees=degrees)
    dcrStacker = stackers.DcrStacker(filterCol=colmap['filter'], altCol=colmap['alt'], degrees=degrees,
                                     raCol=raCol, decCol=decCol, lstCol=colmap['lst'],
                                     site='LSST', mjdCol=colmap['mjd'])

    # Set up parallax metrics.
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=raCol, latCol=decCol, latLonDeg=degrees)
    subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    displayDict = {'group': 'SRD Parallax', 'subgroup': subgroup,
                   'order': 0, 'caption': None}
    # Expected error on parallax at 10 AU.
    plotmaxVals = (2.0, 15.0)
    summary = [metrics.AreaSummaryMetric(area=18000, reduce_func=np.median, decreasing=False,
                                         metricName='Median Parallax Error (18k)')]
    summary.append(metrics.PercentileMetric(percentile=95, metricName='95th Percentile Parallax Error'))
    summary.extend(standardSummary())
    for rmag, plotmax in zip(rmags_para, plotmaxVals):
        plotDict = {'xMin': 0, 'xMax': plotmax, 'colorMin': 0, 'colorMax': plotmax}
        metric = metrics.ParallaxMetric(metricName='Parallax Error @ %.1f' % (rmag), rmag=rmag,
                                        seeingCol=colmap['seeingGeom'], filterCol=colmap['filter'],
                                        m5Col=colmap['fiveSigmaDepth'], normalize=False)
        bundle = mb.MetricBundle(metric, slicer, sql, metadata=metadata,
                                 stackerList=[parallaxStacker, ditherStacker],
                                 displayDict=displayDict, plotDict=plotDict,
                                 summaryMetrics=summary,
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1

    # Parallax normalized to 'best possible' if all visits separated by 6 months.
    # This separates the effect of cadence from depth.
    for rmag in rmags_para:
        metric = metrics.ParallaxMetric(metricName='Normalized Parallax @ %.1f' % (rmag), rmag=rmag,
                                        seeingCol=colmap['seeingGeom'], filterCol=colmap['filter'],
                                        m5Col=colmap['fiveSigmaDepth'], normalize=True)
        bundle = mb.MetricBundle(metric, slicer, sql, metadata=metadata,
                                 stackerList=[parallaxStacker, ditherStacker],
                                 displayDict=displayDict,
                                 summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1
    # Parallax factor coverage.
    for rmag in rmags_para:
        metric = metrics.ParallaxCoverageMetric(metricName='Parallax Coverage @ %.1f' % (rmag),
                                                rmag=rmag, m5Col=colmap['fiveSigmaDepth'],
                                                mjdCol=colmap['mjd'], filterCol=colmap['filter'],
                                                seeingCol=colmap['seeingGeom'])
        bundle = mb.MetricBundle(metric, slicer, sql, metadata=metadata,
                                 stackerList=[parallaxStacker, ditherStacker],
                                 displayDict=displayDict, summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1
    # Parallax problems can be caused by HA and DCR degeneracies. Check their correlation.
    for rmag in rmags_para:
        metric = metrics.ParallaxDcrDegenMetric(metricName='Parallax-DCR degeneracy @ %.1f' % (rmag),
                                                rmag=rmag, seeingCol=colmap['seeingEff'],
                                                filterCol=colmap['filter'], m5Col=colmap['fiveSigmaDepth'])
        caption = 'Correlation between parallax offset magnitude and hour angle for a r=%.1f star.' % (rmag)
        caption += ' (0 is good, near -1 or 1 is bad).'
        bundle = mb.MetricBundle(metric, slicer, sql, metadata=metadata,
                                 stackerList=[dcrStacker, parallaxStacker, ditherStacker],
                                 displayDict=displayDict, summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1

    # Proper Motion metrics.
    displayDict = {'group': 'SRD Proper Motion', 'subgroup': subgroup, 'order': 0, 'caption': None}
    # Proper motion errors.
    plotmaxVals = (1.0, 5.0)
    summary = [metrics.AreaSummaryMetric(area=18000, reduce_func=np.median, decreasing=False,
                                         metricName='Median Proper Motion Error (18k)')]
    summary.append(metrics.PercentileMetric(metricName='95th Percentile Proper Motion Error'))
    summary.extend(standardSummary())
    for rmag, plotmax in zip(rmags_pm, plotmaxVals):
        plotDict = {'xMin': 0, 'xMax': plotmax, 'colorMin': 0, 'colorMax': plotmax}
        metric = metrics.ProperMotionMetric(metricName='Proper Motion Error @ %.1f' % rmag,
                                            rmag=rmag, m5Col=colmap['fiveSigmaDepth'],
                                            mjdCol=colmap['mjd'], filterCol=colmap['filter'],
                                            seeingCol=colmap['seeingGeom'], normalize=False)
        bundle = mb.MetricBundle(metric, slicer, sql, metadata=metadata,
                                 stackerList=[ditherStacker],
                                 displayDict=displayDict, plotDict=plotDict,
                                 summaryMetrics=summary,
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1
    # Normalized proper motion.
    for rmag in rmags_pm:
        metric = metrics.ProperMotionMetric(metricName='Normalized Proper Motion @ %.1f' % rmag,
                                            rmag=rmag, m5Col=colmap['fiveSigmaDepth'],
                                            mjdCol=colmap['mjd'], filterCol=colmap['filter'],
                                            seeingCol=colmap['seeingGeom'], normalize=True)
        bundle = mb.MetricBundle(metric, slicer, sql, metadata=metadata,
                                 stackerList=[ditherStacker],
                                 displayDict=displayDict, summaryMetrics=standardSummary(),
                                 plotFuncs=subsetPlots)
        bundleList.append(bundle)
        displayDict['order'] += 1

    # Set the runName for all bundles and return the bundleDict.
    for b in bundleList:
        b.setRunName(runName)
    return mb.makeBundlesDictFromList(bundleList)
Exemplo n.º 4
0
def descWFDBatch(colmap=None, runName='opsim', nside=64,
                 bandpass='******', nfilters_needed=6, lim_ebv=0.2,
                 mag_cuts = {1: 24.75 - 0.1, 3: 25.35 - 0.1, 6: 25.72 - 0.1, 10: 26.0 - 0.1}):

    # Hide some dependencies .. we should probably bring these into MAF
    from mafContrib.lssmetrics.depthLimitedNumGalMetric import DepthLimitedNumGalMetric
    from mafContrib import (Plasticc_metric, plasticc_slicer, load_plasticc_lc)

    # The options to add additional sql constraints are removed for now.
    if colmap is None:
        colmap = ColMapDict('fbs')

    # Calculate a subset of DESC WFD-related metrics.
    displayDict = {'group': 'Cosmology'}
    subgroupCount = 1

    standardStats = standardSummary(withCount=False)
    subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    if not isinstance(mag_cuts, dict):
        if isinstance(mag_cuts, float) or isinstance(mag_cuts, int):
            mag_cuts = {10: mag_cuts}
        else:
            raise TypeError()
    yrs = list(mag_cuts.keys())
    maxYr = max(yrs)

    # Load up the plastic light curves
    models = ['SNIa-normal']
    plasticc_models_dict = {}
    for model in models:
        plasticc_models_dict[model] = list(load_plasticc_lc(model=model).values())

    # One of the primary concerns for DESC WFD metrics is to add dust extinction and coadded depth limits
    # as well as to get some coverage in all 6 bandpasses.
    # These cuts figure into many of the general metrics.

    displayDict['subgroup'] = f'{subgroupCount}: Static Science'
    ## Static Science
    # Calculate the static science metrics - effective survey area, mean/median coadded depth, stdev of
    # coadded depth and the 3x2ptFoM emulator.

    dustmap = maps.DustMap(nside=nside, interp=False)
    pix_area = hp.nside2pixarea(nside, degrees=True)
    summaryMetrics = [metrics.MeanMetric(), metrics.MedianMetric(), metrics.RmsMetric(),
                      metrics.CountRatioMetric(normVal=1/pix_area, metricName='Effective Area (deg)')]
    bundleList = []
    displayDict['order'] = 0
    for yr_cut in yrs:
        ptsrc_lim_mag_i_band = mag_cuts[yr_cut]
        sqlconstraint = 'night <= %s' % (yr_cut * 365.25)
        sqlconstraint += ' and note not like "DD%"'
        metadata = f'{bandpass} band non-DD year {yr_cut}'
        ThreebyTwoSummary = metrics.StaticProbesFoMEmulatorMetricSimple(nside=nside, year=yr_cut,
                                                                        metricName='3x2ptFoM')
        print(colmap['fiveSigmaDepth'], colmap['filter'])
        m = metrics.ExgalM5_with_cuts(m5Col=colmap['fiveSigmaDepth'], filterCol=colmap['filter'],
                                      lsstFilter=bandpass, nFilters=nfilters_needed,
                                      extinction_cut=lim_ebv, depth_cut=ptsrc_lim_mag_i_band)
        s = slicers.HealpixSlicer(nside=nside, useCache=False)
        caption = f'Cosmology/Static Science metrics are based on evaluating the region of '
        caption += f'the sky that meets the requirements (in year {yr_cut} of coverage in '
        caption += f'all {nfilters_needed}, a lower E(B-V) value than {lim_ebv}, and at '
        caption += f'least a coadded depth of {ptsrc_lim_mag_i_band} in {bandpass}. '
        caption += f'From there the effective survey area, coadded depth, standard deviation of the depth, '
        caption += f'and a 3x2pt static science figure of merit emulator are calculated using the '
        caption += f'dust-extincted coadded depth map (over that reduced footprint).'
        displayDict['caption'] = caption
        bundle = mb.MetricBundle(m, s, sqlconstraint, mapsList=[dustmap], metadata=metadata,
                                 summaryMetrics=summaryMetrics + [ThreebyTwoSummary],
                                 displayDict=displayDict)
        displayDict['order'] += 1
        bundleList.append(bundle)


    ## LSS Science
    # The only metric we have from LSS is the NGals metric - which is similar to the GalaxyCountsExtended
    # metric, but evaluated only on the depth/dust cuts footprint.
    subgroupCount += 1
    displayDict['subgroup'] = f'{subgroupCount}: LSS'
    displayDict['order'] = 0
    plotDict = {'nTicks': 5}
    # Have to include all filters in query, so that we check for all-band coverage.
    # Galaxy numbers calculated using 'bandpass' images only though.
    sqlconstraint = f'note not like "DD%"'
    metadata = f'{bandpass} band galaxies non-DD'
    metric = DepthLimitedNumGalMetric(m5Col=colmap['fiveSigmaDepth'], filterCol=colmap['filter'],
                                      nside=nside, filterBand=bandpass, redshiftBin='all',
                                      nfilters_needed=nfilters_needed,
                                      lim_mag_i_ptsrc=mag_cuts[maxYr], lim_ebv=lim_ebv)
    summary = [metrics.AreaSummaryMetric(area=18000, reduce_func=np.sum, decreasing=True,
                                         metricName='N Galaxies (18k)')]
    summary.append(metrics.SumMetric(metricName='N Galaxies (all)'))
    slicer = slicers.HealpixSlicer(nside=nside, useCache=False)
    bundle = mb.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                             metadata=metadata, mapsList=[dustmap],
                             displayDict=displayDict, summaryMetrics=summary,
                             plotFuncs=subsetPlots)
    bundleList.append(bundle)


    ## WL metrics
    # Calculates the number of visits per pointing, after removing parts of the footprint due to dust/depth
    subgroupCount += 1
    displayDict['subgroup'] = f'{subgroupCount}: WL'
    displayDict['order'] = 0
    sqlconstraint = f'note not like "DD%" and filter = "{bandpass}"'
    metadata = f'{bandpass} band non-DD'
    minExpTime = 15
    m = metrics.WeakLensingNvisits(m5Col=colmap['fiveSigmaDepth'], expTimeCol=colmap['exptime'],
                                   lsstFilter=bandpass, depthlim=mag_cuts[maxYr],
                                   ebvlim=lim_ebv, min_expTime=minExpTime)
    s = slicers.HealpixSlicer(nside=nside, useCache=False)
    displayDict['caption'] = f'The number of visits per pointing, over the same reduced footprint as '
    displayDict['caption'] += f'described above. A cutoff of {minExpTime} removes very short visits.'
    displayDict['order'] = 1
    bundle = mb.MetricBundle(m, s, sqlconstraint, mapsList=[dustmap], metadata=metadata,
                             summaryMetrics=standardStats, displayDict=displayDict)
    bundleList.append(bundle)

    # This probably will get replaced by @pgris's SN metrics?
    subgroupCount += 1
    displayDict['subgroup'] = f'{subgroupCount}: SNe Ia'
    displayDict['order'] = 0
    # XXX-- use the light curves from PLASTICC here
    displayDict['caption'] = 'Fraction of normal SNe Ia (using PLaSTICCs)'
    sqlconstraint = 'note not like "DD%"'
    metadata = 'non-DD'
    slicer = plasticc_slicer(plcs=plasticc_models_dict['SNIa-normal'], seed=42, badval=0)
    metric = Plasticc_metric(metricName='SNIa')
    # Set the maskval so that we count missing objects as zero.
    summary_stats = [metrics.MeanMetric(maskVal=0)]
    plotFuncs = [plots.HealpixSkyMap()]
    bundle = mb.MetricBundle(metric, slicer, sqlconstraint,
                             metadata=metadata, summaryMetrics=summary_stats,
                             plotFuncs=plotFuncs,  displayDict=displayDict)
    bundleList.append(bundle)

    subgroupCount += 1
    displayDict['subgroup'] = f'{subgroupCount}: Camera Rotator'
    displayDict['caption'] = 'Kuiper statistic (0 is uniform, 1 is delta function) of the '
    slicer = slicers.HealpixSlicer(nside=nside)
    metric1 = metrics.KuiperMetric('rotSkyPos')
    metric2 = metrics.KuiperMetric('rotTelPos')
    filterlist, colors, filterorders, filtersqls, filtermetadata = filterList(all=False,
                                                                              extraSql=None,
                                                                              extraMetadata=None)
    for f in filterlist:
        for m in [metric1, metric2]:
            plotDict = {'color': colors[f]}
            displayDict['order'] = filterorders[f]
            displayDict['caption'] += f"{m.colname} for visits in {f} band."
            bundleList.append(mb.MetricBundle(m, slicer, filtersqls[f], plotDict=plotDict,
                                              displayDict=displayDict, summaryMetrics=standardStats,
                                              plotFuncs=subsetPlots))

    # Set the runName for all bundles and return the bundleDict.
    for b in bundleList:
        b.setRunName(runName)
    return mb.makeBundlesDictFromList(bundleList)
Exemplo n.º 5
0
def glanceBatch(colmap=None,
                runName='opsim',
                nside=64,
                filternames=('u', 'g', 'r', 'i', 'z', 'y'),
                nyears=10,
                pairnside=32,
                sqlConstraint=None,
                slicer_camera='LSST'):
    """Generate a handy set of metrics that give a quick overview of how well a survey performed.
    This is a meta-set of other batches, to some extent.

    Parameters
    ----------
    colmap : dict, opt
        A dictionary with a mapping of column names. Default will use OpsimV4 column names.
    run_name : str, opt
        The name of the simulated survey. Default is "opsim".
    nside : int, opt
        The nside for the healpix slicers. Default 64.
    filternames : list of str, opt
        The list of individual filters to use when running metrics.
        Default is ('u', 'g', 'r', 'i', 'z', 'y').
        There is always an all-visits version of the metrics run as well.
    nyears : int (10)
        How many years to attempt to make hourglass plots for
    pairnside : int (32)
        nside to use for the pair fraction metric (it's slow, so nice to use lower resolution)
    sqlConstraint : str or None, opt
        Additional SQL constraint to apply to all metrics.
    slicer_camera : str ('LSST')
        Sets which spatial slicer to use. options are 'LSST' and 'ComCam'

    Returns
    -------
    metricBundleDict
    """
    if isinstance(colmap, str):
        raise ValueError('colmap must be a dictionary, not a string')

    if colmap is None:
        colmap = ColMapDict('opsimV4')

    bundleList = []

    if sqlConstraint is None:
        sqlC = ''
    else:
        sqlC = '(%s) and' % sqlConstraint

    if slicer_camera == 'LSST':
        spatial_slicer = slicers.HealpixSlicer
    elif slicer_camera == 'ComCam':
        spatial_slicer = slicers.HealpixComCamSlicer
    else:
        raise ValueError('Camera must be LSST or Comcam')

    sql_per_filt = [
        '%s %s="%s"' % (sqlC, colmap['filter'], filtername)
        for filtername in filternames
    ]
    sql_per_and_all_filters = [sqlConstraint] + sql_per_filt

    standardStats = standardSummary()
    subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    # Super basic things
    displayDict = {'group': 'Basic Stats', 'order': 1}
    sql = sqlConstraint
    slicer = slicers.UniSlicer()
    # Length of Survey
    metric = metrics.FullRangeMetric(col=colmap['mjd'],
                                     metricName='Length of Survey (days)')
    bundle = metricBundles.MetricBundle(metric,
                                        slicer,
                                        sql,
                                        displayDict=displayDict)
    bundleList.append(bundle)

    # Total number of filter changes
    metric = metrics.NChangesMetric(col=colmap['filter'],
                                    orderBy=colmap['mjd'])
    bundle = metricBundles.MetricBundle(metric,
                                        slicer,
                                        sql,
                                        displayDict=displayDict)
    bundleList.append(bundle)

    # Total open shutter fraction
    metric = metrics.OpenShutterFractionMetric(
        slewTimeCol=colmap['slewtime'],
        expTimeCol=colmap['exptime'],
        visitTimeCol=colmap['visittime'])
    bundle = metricBundles.MetricBundle(metric,
                                        slicer,
                                        sql,
                                        displayDict=displayDict)
    bundleList.append(bundle)

    # Total effective exposure time
    metric = metrics.TeffMetric(m5Col=colmap['fiveSigmaDepth'],
                                filterCol=colmap['filter'],
                                normed=True)
    for sql in sql_per_and_all_filters:
        bundle = metricBundles.MetricBundle(metric,
                                            slicer,
                                            sql,
                                            displayDict=displayDict)
        bundleList.append(bundle)

    # Number of observations, all and each filter
    metric = metrics.CountMetric(col=colmap['mjd'],
                                 metricName='Number of Exposures')
    for sql in sql_per_and_all_filters:
        bundle = metricBundles.MetricBundle(metric,
                                            slicer,
                                            sql,
                                            displayDict=displayDict)
        bundleList.append(bundle)

    # The alt/az plots of all the pointings
    slicer = spatial_slicer(nside=nside,
                            latCol=colmap['alt'],
                            lonCol=colmap['az'],
                            latLonDeg=colmap['raDecDeg'],
                            useCache=False)
    metric = metrics.CountMetric(colmap['mjd'],
                                 metricName='Nvisits as function of Alt/Az')
    plotFuncs = [plots.LambertSkyMap()]

    plotDict = {'norm': 'log'}
    for sql in sql_per_and_all_filters:
        bundle = metricBundles.MetricBundle(metric,
                                            slicer,
                                            sql,
                                            plotFuncs=plotFuncs,
                                            displayDict=displayDict,
                                            plotDict=plotDict)
        bundleList.append(bundle)

    # Things to check per night
    # Open Shutter per night
    displayDict = {'group': 'Pointing Efficency', 'order': 2}
    slicer = slicers.OneDSlicer(sliceColName=colmap['night'], binsize=1)
    metric = metrics.OpenShutterFractionMetric(
        slewTimeCol=colmap['slewtime'],
        expTimeCol=colmap['exptime'],
        visitTimeCol=colmap['visittime'])
    sql = sqlConstraint
    bundle = metricBundles.MetricBundle(metric,
                                        slicer,
                                        sql,
                                        summaryMetrics=standardStats,
                                        displayDict=displayDict)
    bundleList.append(bundle)

    # Number of filter changes per night
    slicer = slicers.OneDSlicer(sliceColName=colmap['night'], binsize=1)
    metric = metrics.NChangesMetric(col=colmap['filter'],
                                    orderBy=colmap['mjd'],
                                    metricName='Filter Changes')
    bundle = metricBundles.MetricBundle(metric,
                                        slicer,
                                        sql,
                                        summaryMetrics=standardStats,
                                        displayDict=displayDict)
    bundleList.append(bundle)

    # A few basic maps
    # Number of observations, coadded depths
    extended_stats = standardStats.copy()
    extended_stats.append(
        metrics.AreaSummaryMetric(decreasing=True, metricName='top18k'))
    extended_stats.append(
        metrics.PercentileMetric(col='metricdata', percentile=10))
    displayDict = {'group': 'Basic Maps', 'order': 3}
    slicer = spatial_slicer(nside=nside,
                            latCol=colmap['dec'],
                            lonCol=colmap['ra'],
                            latLonDeg=colmap['raDecDeg'])
    metric = metrics.CountMetric(col=colmap['mjd'])
    plotDict = {'percentileClip': 95.}
    for sql in sql_per_and_all_filters:
        bundle = metricBundles.MetricBundle(metric,
                                            slicer,
                                            sql,
                                            summaryMetrics=extended_stats,
                                            displayDict=displayDict,
                                            plotDict=plotDict)
        bundleList.append(bundle)

    metric = metrics.Coaddm5Metric(m5Col=colmap['fiveSigmaDepth'])
    for sql in sql_per_and_all_filters:
        bundle = metricBundles.MetricBundle(metric,
                                            slicer,
                                            sql,
                                            summaryMetrics=extended_stats,
                                            displayDict=displayDict)
        bundleList.append(bundle)

    # Checking a few basic science things
    # Maybe check astrometry, observation pairs, SN
    plotDict = {'percentileClip': 95.}
    displayDict = {'group': 'Science', 'subgroup': 'Astrometry', 'order': 4}

    stackerList = []
    stacker = stackers.ParallaxFactorStacker(raCol=colmap['ra'],
                                             decCol=colmap['dec'],
                                             degrees=colmap['raDecDeg'],
                                             dateCol=colmap['mjd'])
    stackerList.append(stacker)

    astrom_stats = [
        metrics.AreaSummaryMetric(decreasing=False, metricName='best18k'),
        metrics.PercentileMetric(col='metricdata', percentile=90)
    ]
    # Maybe parallax and proper motion, fraction of visits in a good pair for SS
    displayDict['caption'] = r'Parallax precision of an $r=20$ flat SED star'
    metric = metrics.ParallaxMetric(m5Col=colmap['fiveSigmaDepth'],
                                    filterCol=colmap['filter'],
                                    seeingCol=colmap['seeingGeom'])
    sql = sqlConstraint
    bundle = metricBundles.MetricBundle(metric,
                                        slicer,
                                        sql,
                                        plotFuncs=subsetPlots,
                                        displayDict=displayDict,
                                        stackerList=stackerList,
                                        plotDict=plotDict,
                                        summaryMetrics=astrom_stats)
    bundleList.append(bundle)
    displayDict[
        'caption'] = r'Proper motion precision of an $r=20$ flat SED star'
    metric = metrics.ProperMotionMetric(m5Col=colmap['fiveSigmaDepth'],
                                        mjdCol=colmap['mjd'],
                                        filterCol=colmap['filter'],
                                        seeingCol=colmap['seeingGeom'])
    bundle = metricBundles.MetricBundle(metric,
                                        slicer,
                                        sql,
                                        plotFuncs=subsetPlots,
                                        displayDict=displayDict,
                                        plotDict=plotDict,
                                        summaryMetrics=astrom_stats)
    bundleList.append(bundle)

    # Solar system stuff
    displayDict['caption'] = 'Fraction of observations that are in pairs'
    displayDict['subgroup'] = 'Solar System'

    sql = '%s (filter="g" or filter="r" or filter="i")' % sqlC
    pairSlicer = slicers.HealpixSlicer(nside=pairnside,
                                       latCol=colmap['dec'],
                                       lonCol=colmap['ra'],
                                       latLonDeg=colmap['raDecDeg'])
    metric = metrics.PairFractionMetric(mjdCol=colmap['mjd'])
    bundle = metricBundles.MetricBundle(metric,
                                        pairSlicer,
                                        sql,
                                        plotFuncs=subsetPlots,
                                        displayDict=displayDict)
    bundleList.append(bundle)

    # stats from the note column
    if 'note' in colmap.keys():
        displayDict = {'group': 'Basic Stats', 'subgroup': 'Percent stats'}
        metric = metrics.StringCountMetric(col=colmap['note'],
                                           percent=True,
                                           metricName='Percents')
        sql = ''
        slicer = slicers.UniSlicer()
        bundle = metricBundles.MetricBundle(metric,
                                            slicer,
                                            sql,
                                            displayDict=displayDict)
        bundleList.append(bundle)
        displayDict['subgroup'] = 'Count Stats'
        metric = metrics.StringCountMetric(col=colmap['note'],
                                           metricName='Counts')
        bundle = metricBundles.MetricBundle(metric,
                                            slicer,
                                            sql,
                                            displayDict=displayDict)
        bundleList.append(bundle)

    for b in bundleList:
        b.setRunName(runName)

    bd = metricBundles.makeBundlesDictFromList(bundleList)

    # Add hourglass plots.
    hrDict = hourglassPlots(colmap=colmap,
                            runName=runName,
                            nyears=nyears,
                            extraSql=sqlConstraint)
    bd.update(hrDict)
    # Add basic slew stats.
    try:
        slewDict = slewBasics(colmap=colmap, runName=runName)
        bd.update(slewDict)
    except KeyError as e:
        warnings.warn(
            'Could not add slew stats: missing required key %s from colmap' %
            (e))

    return bd
Exemplo n.º 6
0
def scienceRadarBatch(colmap=None, runName='opsim', extraSql=None, extraMetadata=None, nside=64,
                      benchmarkArea=18000, benchmarkNvisits=825, DDF=True):
    """A batch of metrics for looking at survey performance relative to the SRD and the main
    science drivers of LSST.

    Parameters
    ----------

    """
    # Hide dependencies
    from mafContrib.LSSObsStrategy.galaxyCountsMetric_extended import GalaxyCountsMetric_extended
    from mafContrib import (Plasticc_metric, plasticc_slicer, load_plasticc_lc,
                            TdePopMetric, generateTdePopSlicer,
                            generateMicrolensingSlicer, MicrolensingMetric)

    if colmap is None:
        colmap = ColMapDict('fbs')

    if extraSql is None:
        extraSql = ''
    if extraSql == '':
        joiner = ''
    else:
        joiner = ' and '

    bundleList = []
    # Get some standard per-filter coloring and sql constraints
    filterlist, colors, filterorders, filtersqls, filtermetadata = filterList(all=False,
                                                                              extraSql=extraSql,
                                                                              extraMetadata=extraMetadata)

    standardStats = standardSummary(withCount=False)

    healslicer = slicers.HealpixSlicer(nside=nside)
    subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    # Load up the plastic light curves - SNIa-normal are loaded in descWFDBatch
    models = ['SNIa-normal', 'KN']
    plasticc_models_dict = {}
    for model in models:
        plasticc_models_dict[model] = list(load_plasticc_lc(model=model).values())

    #########################
    # SRD, DM, etc
    #########################
    fOb = fOBatch(runName=runName, colmap=colmap, extraSql=extraSql, extraMetadata=extraMetadata,
                  benchmarkArea=benchmarkArea, benchmarkNvisits=benchmarkNvisits)
    astromb = astrometryBatch(runName=runName, colmap=colmap, extraSql=extraSql, extraMetadata=extraMetadata)
    rapidb = rapidRevisitBatch(runName=runName, colmap=colmap, extraSql=extraSql, extraMetadata=extraMetadata)

    # loop through and modify the display dicts - set SRD as group and their previous 'group' as the subgroup
    temp_list = []
    for key in fOb:
        temp_list.append(fOb[key])
    for key in astromb:
        temp_list.append(astromb[key])
    for key in rapidb:
        temp_list.append(rapidb[key])
    for metricb in temp_list:
        metricb.displayDict['subgroup'] = metricb.displayDict['group'].replace('SRD', '').lstrip(' ')
        metricb.displayDict['group'] = 'SRD'
    bundleList.extend(temp_list)

    displayDict = {'group': 'SRD', 'subgroup': 'Year Coverage', 'order': 0,
                   'caption': 'Number of years with observations.'}
    slicer = slicers.HealpixSlicer(nside=nside)
    metric = metrics.YearCoverageMetric()
    for f in filterlist:
        plotDict = {'colorMin': 7, 'colorMax': 10, 'color': colors[f]}
        summary = [metrics.AreaSummaryMetric(area=18000, reduce_func=np.mean, decreasing=True,
                                             metricName='N Seasons (18k) %s' % f)]
        bundleList.append(mb.MetricBundle(metric, slicer, filtersqls[f],
                                          plotDict=plotDict, metadata=filtermetadata[f],
                                          displayDict=displayDict, summaryMetrics=summary))

    #########################
    # Solar System
    #########################
    # Generally, we need to run Solar System metrics separately; they're a multi-step process.


    #########################
    # Galaxies
    #########################

    displayDict = {'group': 'Galaxies', 'subgroup': 'Galaxy Counts', 'order': 0, 'caption': None}
    plotDict = {'percentileClip': 95., 'nTicks': 5}
    sql = extraSql + joiner + 'filter="i"'
    metadata = combineMetadata(extraMetadata, 'i band')
    metric = GalaxyCountsMetric_extended(filterBand='i', redshiftBin='all', nside=nside)
    summary = [metrics.AreaSummaryMetric(area=18000, reduce_func=np.sum, decreasing=True,
                                         metricName='N Galaxies (18k)')]
    summary.append(metrics.SumMetric(metricName='N Galaxies (all)'))
    # make sure slicer has cache off
    slicer = slicers.HealpixSlicer(nside=nside, useCache=False)
    displayDict['caption'] = 'Number of galaxies across the sky, in i band. Generally, full survey footprint.'
    bundle = mb.MetricBundle(metric, slicer, sql, plotDict=plotDict,
                             metadata=metadata,
                             displayDict=displayDict, summaryMetrics=summary,
                             plotFuncs=subsetPlots)
    bundleList.append(bundle)
    displayDict['order'] += 1


    #########################
    # Cosmology
    #########################

    # note the desc batch does not currently take the extraSql or extraMetadata arguments.
    descBundleDict = descWFDBatch(colmap=colmap, runName=runName, nside=nside)
    for d in descBundleDict:
        bundleList.append(descBundleDict[d])

    #########################
    # Variables and Transients
    #########################
    displayDict = {'group': 'Variables/Transients',
                   'subgroup': 'Periodic Stars',
                   'order': 0, 'caption': None}
    for period in [0.5, 1, 2,]:
        for magnitude in [21., 24.]:
            amplitudes = [0.05, 0.1, 1.0]
            periods = [period] * len(amplitudes)
            starMags = [magnitude] * len(amplitudes)

            plotDict = {'nTicks': 3, 'colorMin': 0, 'colorMax': 3, 'xMin': 0, 'xMax': 3}
            metadata = combineMetadata('P_%.1f_Mag_%.0f_Amp_0.05-0.1-1' % (period, magnitude),
                                       extraMetadata)
            sql = None
            displayDict['caption'] = 'Metric evaluates if a periodic signal of period %.1f days could ' \
                                     'be detected for an r=%i star. A variety of amplitudes of periodicity ' \
                                     'are tested: [1, 0.1, and 0.05] mag amplitudes, which correspond to ' \
                                     'metric values of [1, 2, or 3]. ' % (period, magnitude)
            metric = metrics.PeriodicDetectMetric(periods=periods, starMags=starMags,
                                                  amplitudes=amplitudes,
                                                  metricName='PeriodDetection')
            bundle = mb.MetricBundle(metric, healslicer, sql, metadata=metadata,
                                     displayDict=displayDict, plotDict=plotDict,
                                     plotFuncs=subsetPlots, summaryMetrics=standardStats)
            bundleList.append(bundle)
            displayDict['order'] += 1

    # XXX add some PLASTICC metrics for kilovnova and tidal disruption events.
    displayDict['subgroup'] = 'KN'
    displayDict['caption'] = 'Fraction of Kilonova (from PLASTICC)'
    displayDict['order'] = 0
    slicer = plasticc_slicer(plcs=plasticc_models_dict['KN'], seed=43, badval=0)
    metric = Plasticc_metric(metricName='KN')
    plotFuncs = [plots.HealpixSkyMap()]
    summary_stats = [metrics.MeanMetric(maskVal=0)]
    bundle = mb.MetricBundle(metric, slicer, extraSql, runName=runName, summaryMetrics=summary_stats,
                             plotFuncs=plotFuncs, metadata=extraMetadata,
                             displayDict=displayDict)
    bundleList.append(bundle)

    # Tidal Disruption Events
    displayDict['subgroup'] = 'TDE'
    displayDict['caption'] = 'TDE lightcurves that could be identified'

    metric = TdePopMetric()
    slicer = generateTdePopSlicer()
    sql = ''
    plotDict = {'reduceFunc': np.sum, 'nside': 128}
    plotFuncs = [plots.HealpixSkyMap()]
    bundle = mb.MetricBundle(metric, slicer, sql, runName=runName,
                             plotDict=plotDict, plotFuncs=plotFuncs,
                             summaryMetrics=[metrics.MeanMetric(maskVal=0)],
                             displayDict=displayDict)
    bundleList.append(bundle)


    # Microlensing events
    displayDict['subgroup'] = 'Microlensing'
    displayDict['caption'] = 'Fast microlensing events'

    plotDict = {'nside': 128}
    sql = ''
    slicer = generateMicrolensingSlicer(min_crossing_time=1, max_crossing_time=10)
    metric = MicrolensingMetric(metricName='Fast Microlensing')
    bundle = mb.MetricBundle(metric, slicer, sql, runName=runName,
                             summaryMetrics=[metrics.MeanMetric(maskVal=0)],
                             plotFuncs=[plots.HealpixSkyMap()], metadata=extraMetadata,
                             displayDict=displayDict, plotDict=plotDict)
    bundleList.append(bundle)

    displayDict['caption'] = 'Slow microlensing events'
    slicer = generateMicrolensingSlicer(min_crossing_time=100, max_crossing_time=1500)
    metric = MicrolensingMetric(metricName='Slow Microlensing')
    bundle = mb.MetricBundle(metric, slicer, sql, runName=runName,
                             summaryMetrics=[metrics.MeanMetric(maskVal=0)],
                             plotFuncs=[plots.HealpixSkyMap()], metadata=extraMetadata,
                             displayDict=displayDict, plotDict=plotDict)
    bundleList.append(bundle)

    #########################
    # Milky Way
    #########################

    displayDict = {'group': 'Milky Way', 'subgroup': ''}

    displayDict['subgroup'] = 'N stars'
    slicer = slicers.HealpixSlicer(nside=nside, useCache=False)
    sum_stats = [metrics.SumMetric(metricName='Total N Stars, crowding')]
    for f in filterlist:
        stellar_map = maps.StellarDensityMap(filtername=f)
        displayDict['order'] = filterorders[f]
        displayDict['caption'] = 'Number of stars in %s band with an measurement error due to crowding ' \
                                 'of less than 0.2 mag' % f
        # Configure the NstarsMetric - note 'filtername' refers to the filter in which to evaluate crowding
        metric = metrics.NstarsMetric(crowding_error=0.2, filtername=f, ignore_crowding=False,
                                      seeingCol=colmap['seeingGeom'], m5Col=colmap['fiveSigmaDepth'],
                                      maps=[])
        plotDict = {'nTicks': 5, 'logScale': True, 'colorMin': 100}
        bundle = mb.MetricBundle(metric, slicer, filtersqls[f], runName=runName,
                                 summaryMetrics=sum_stats,
                                 plotFuncs=subsetPlots, plotDict=plotDict,
                                 displayDict=displayDict, mapsList=[stellar_map])
        bundleList.append(bundle)


    slicer = slicers.HealpixSlicer(nside=nside, useCache=False)
    sum_stats = [metrics.SumMetric(metricName='Total N Stars, no crowding')]
    for f in filterlist:
        stellar_map = maps.StellarDensityMap(filtername=f)
        displayDict['order'] = filterorders[f]
        displayDict['caption'] = 'Number of stars in %s band with an measurement error ' \
                                 'of less than 0.2 mag, not considering crowding' % f
        # Configure the NstarsMetric - note 'filtername' refers to the filter in which to evaluate crowding
        metric = metrics.NstarsMetric(crowding_error=0.2, filtername=f, ignore_crowding=True,
                                      seeingCol=colmap['seeingGeom'], m5Col=colmap['fiveSigmaDepth'],
                                      metricName='Nstars_no_crowding', maps=[])
        plotDict = {'nTicks': 5, 'logScale': True, 'colorMin': 100}
        bundle = mb.MetricBundle(metric, slicer, filtersqls[f], runName=runName,
                                 summaryMetrics=sum_stats,
                                 plotFuncs=subsetPlots, plotDict=plotDict,
                                 displayDict=displayDict, mapsList=[stellar_map])
        bundleList.append(bundle)


    #########################
    # DDF
    #########################
    if DDF:
        # Hide this import to avoid adding a dependency.
        from lsst.sims.featureScheduler.surveys import generate_dd_surveys, Deep_drilling_survey
        ddf_surveys = generate_dd_surveys()

        # Add on the Euclid fields
        # XXX--to update. Should have a spot where all the DDF locations are stored.
        ddf_surveys.append(Deep_drilling_survey([], 58.97, -49.28, survey_name='DD:EDFSa'))
        ddf_surveys.append(Deep_drilling_survey([], 63.6, -47.60, survey_name='DD:EDFSb'))

        # For doing a high-res sampling of the DDF for co-adds
        ddf_radius = 1.8  # Degrees
        ddf_nside = 512

        ra, dec = hpid2RaDec(ddf_nside, np.arange(hp.nside2npix(ddf_nside)))

        displayDict = {'group': 'DDF depths', 'subgroup': None}

        for survey in ddf_surveys:
            displayDict['subgroup'] = survey.survey_name
            # Crop off the u-band only DDF
            if survey.survey_name[0:4] != 'DD:u':
                dist_to_ddf = angularSeparation(ra, dec, np.degrees(survey.ra), np.degrees(survey.dec))
                goodhp = np.where(dist_to_ddf <= ddf_radius)
                slicer = slicers.UserPointsSlicer(ra=ra[goodhp], dec=dec[goodhp], useCamera=False)
                for f in filterlist:
                    metric = metrics.Coaddm5Metric(metricName=survey.survey_name + ', ' + f)
                    summary = [metrics.MedianMetric(metricName='Median depth ' + survey.survey_name+', ' + f)]
                    plotDict = {'color': colors[f]}
                    sql = filtersqls[f]
                    displayDict['order'] = filterorders[f]
                    displayDict['caption'] = 'Coadded m5 depth in %s band.' % (f)
                    bundle = mb.MetricBundle(metric, slicer, sql, metadata=filtermetadata[f],
                                             displayDict=displayDict, summaryMetrics=summary,
                                             plotFuncs=[], plotDict=plotDict)
                    bundleList.append(bundle)

        displayDict = {'group': 'DDF Transients', 'subgroup': None}
        for survey in ddf_surveys:
            displayDict['subgroup'] = survey.survey_name
            if survey.survey_name[0:4] != 'DD:u':
                slicer = plasticc_slicer(plcs=plasticc_models_dict['SNIa-normal'], seed=42,
                                         ra_cen=survey.ra, dec_cen=survey.dec, radius=np.radians(3.),
                                         useCamera=False)
                metric = Plasticc_metric(metricName=survey.survey_name+' SNIa')
                sql = extraSql
                summary_stats = [metrics.MeanMetric(maskVal=0)]
                plotFuncs = [plots.HealpixSkyMap()]
                bundle = mb.MetricBundle(metric, slicer, sql, runName=runName,
                                         summaryMetrics=summary_stats,
                                         plotFuncs=plotFuncs, metadata=extraMetadata,
                                         displayDict=displayDict)
                bundleList.append(bundle)
                displayDict['order'] = 10

    # Set the runName for all bundles and return the bundleDict.
    for b in bundleList:
        b.setRunName(runName)
    bundleDict = mb.makeBundlesDictFromList(bundleList)

    return bundleDict