Exemplo n.º 1
0
    def testOpSimFieldStacker(self):
        """
        Test the OpSimFieldStacker
        """
        rng = np.random.RandomState(812351)
        s = stackers.OpSimFieldStacker(raCol='ra', decCol='dec', degrees=False)

        # First sanity check. Make sure the center of the fields returns the right field id
        opsim_fields_db = FieldsDatabase()

        # Returned RA/Dec coordinates in degrees
        field_id, ra, dec = opsim_fields_db.get_id_ra_dec_arrays(
            "select * from Field;")

        data = np.array(list(zip(np.radians(ra), np.radians(dec))),
                        dtype=list(zip(['ra', 'dec'], [float, float])))
        new_data = s.run(data)

        np.testing.assert_array_equal(field_id, new_data['opsimFieldId'])

        # Cherry picked a set of coordinates that should belong to a certain list of fields.
        # These coordinates are not exactly at the center of fields, but close enough that
        # they should be classified as belonging to them.
        ra_inside_2548 = (10. + 1. / 60 +
                          6.59 / 60. / 60.) * np.pi / 12.  # 10:01:06.59
        dec_inside_2548 = np.radians(
            -1. * (2. + 8. / 60. + 27.6 / 60. / 60.))  # -02:08:27.6

        ra_inside_8 = (8. + 49. / 60 +
                       19.83 / 60. / 60.) * np.pi / 12.  # 08:49:19.83
        dec_inside_8 = np.radians(
            -1. * (85. + 19. / 60. + 04.7 / 60. / 60.))  # -85:19:04.7

        ra_inside_1253 = (9. + 16. / 60 +
                          13.67 / 60. / 60.) * np.pi / 12.  # 09:16:13.67
        dec_inside_1253 = np.radians(
            -1. * (30. + 23. / 60. + 41.4 / 60. / 60.))  # -30:23:41.4

        data = np.zeros(3, dtype=list(zip(['ra', 'dec'], [float, float])))
        field_id = np.array([2548, 8, 1253], dtype=int)
        data['ra'] = np.array([ra_inside_2548, ra_inside_8, ra_inside_1253])
        data['dec'] = np.array(
            [dec_inside_2548, dec_inside_8, dec_inside_1253])

        new_data = s.run(data)

        np.testing.assert_array_equal(field_id, new_data['opsimFieldId'])

        # Now let's generate a set of random coordinates and make sure they are all assigned a fieldID.
        data = np.array(list(
            zip(
                rng.rand(600) * 2. * np.pi,
                rng.rand(600) * np.pi - np.pi / 2.)),
                        dtype=list(zip(['ra', 'dec'], [float, float])))

        new_data = s.run(data)

        self.assertGreater(new_data['opsimFieldId'].max(), 0)
Exemplo n.º 2
0
 def __init__(self, raCol='fieldRA', decCol='fieldDec', degrees=True):
     self.colsReq = [raCol, decCol]
     self.units = ['#']
     self.raCol = raCol
     self.decCol = decCol
     self.degrees = degrees
     fields_db = FieldsDatabase()
     # Returned RA/Dec coordinates in degrees
     fieldid, ra, dec = fields_db.get_id_ra_dec_arrays("select * from Field;")
     asort = np.argsort(fieldid)
     self.tree = _buildTree(np.radians(ra[asort]),
                            np.radians(dec[asort]))
Exemplo n.º 3
0
    def testOpSimFieldStacker(self):
        """
        Test the OpSimFieldStacker
        """
        rng = np.random.RandomState(812351)
        s = stackers.OpSimFieldStacker(raCol='ra', decCol='dec', degrees=False)

        # First sanity check. Make sure the center of the fields returns the right field id
        opsim_fields_db = FieldsDatabase()

        # Returned RA/Dec coordinates in degrees
        field_id, ra, dec = opsim_fields_db.get_id_ra_dec_arrays("select * from Field;")

        data = np.array(list(zip(np.radians(ra),
                                 np.radians(dec))),
                        dtype=list(zip(['ra', 'dec'], [float, float])))
        new_data = s.run(data)

        np.testing.assert_array_equal(field_id, new_data['opsimFieldId'])

        # Cherry picked a set of coordinates that should belong to a certain list of fields.
        # These coordinates are not exactly at the center of fields, but close enough that
        # they should be classified as belonging to them.
        ra_inside_2548 = (10. + 1. / 60 + 6.59 / 60. / 60.) * np.pi / 12.  # 10:01:06.59
        dec_inside_2548 = np.radians(-1. * (2. + 8. / 60. + 27.6 / 60. / 60.))  # -02:08:27.6

        ra_inside_8 = (8. + 49. / 60 + 19.83 / 60. / 60.) * np.pi / 12.  # 08:49:19.83
        dec_inside_8 = np.radians(-1. * (85. + 19. / 60. + 04.7 / 60. / 60.))  # -85:19:04.7

        ra_inside_1253 = (9. + 16. / 60 + 13.67 / 60. / 60.) * np.pi / 12.  # 09:16:13.67
        dec_inside_1253 = np.radians(-1. * (30. + 23. / 60. + 41.4 / 60. / 60.))  # -30:23:41.4

        data = np.zeros(3, dtype=list(zip(['ra', 'dec'], [float, float])))
        field_id = np.array([2548, 8, 1253], dtype=int)
        data['ra'] = np.array([ra_inside_2548, ra_inside_8, ra_inside_1253])
        data['dec'] = np.array([dec_inside_2548, dec_inside_8, dec_inside_1253])

        new_data = s.run(data)

        np.testing.assert_array_equal(field_id, new_data['opsimFieldId'])

        # Now let's generate a set of random coordinates and make sure they are all assigned a fieldID.
        data = np.array(list(zip(rng.rand(600) * 2. * np.pi,
                                 rng.rand(600) * np.pi - np.pi / 2.)),
                        dtype=list(zip(['ra', 'dec'], [float, float])))

        new_data = s.run(data)

        self.assertGreater(new_data['opsimFieldId'].max(), 0)
Exemplo n.º 4
0
 def test_proposal_fields(self):
     fd = FieldsDatabase()
     fs = FieldSelection()
     gen = BasicProposal1()
     ids = gen.proposal_fields(fd, fs)
     self.assertEqual(len(ids), 139)
     gen = BasicProposal4()
     ids = gen.proposal_fields(fd, fs)
     self.assertEqual(len(ids), 2285)
     gen = BasicProposal7()
     ids = gen.proposal_fields(fd, fs)
     self.assertEqual(len(ids), 239)
Exemplo n.º 5
0
def read_fields():
    """
    Read in the Field coordinates
    Returns
    -------
    numpy.array
        With RA and dec in radians.
    """
    query = 'select fieldId, fieldRA, fieldDEC from Field;'
    fd = FieldsDatabase()
    fields = np.array(list(fd.get_field_set(query)))
    # order by field ID
    fields = fields[fields[:,0].argsort()]

    names = ['RA', 'dec']
    types = [float, float]
    result = np.zeros(np.size(fields[:, 1]), dtype=list(zip(names, types)))
    result['RA'] = np.radians(fields[:, 1])
    result['dec'] = np.radians(fields[:, 2])

    return result
Exemplo n.º 6
0
    def __init__(self, options, configuration, database):
        """Initialize the class.

        Parameters
        ----------
        options : argparse.Namespace
            The instance returned by ArgumentParser containing the command-line options.
        configuration : :class:`.SimulationConfig`
            The simulation configuration instance.
        database : :class:`.SocsDatabase`
            The simulation database instance.
        """
        self.opts = options
        self.conf = configuration
        self.db = database
        if self.opts.frac_duration == -1:
            self.fractional_duration = self.conf.survey.duration
        else:
            self.fractional_duration = self.opts.frac_duration
            self.conf.survey.duration = self.opts.frac_duration
        self.time_handler = TimeHandler(self.conf.survey.start_date)
        self.log = logging.getLogger("kernel.Simulator")
        self.sal = SalManager()
        self.seq = Sequencer(self.conf.observing_site,
                             self.conf.survey.idle_delay)
        self.dh = DowntimeHandler()
        self.conf_comm = ConfigurationCommunicator()
        self.sun = Sun()
        self.cloud_model = CloudModel(self.time_handler)
        self.seeing_model = SeeingModel(self.time_handler)
        self.field_database = FieldsDatabase()
        self.field_selection = FieldSelection()
        self.obs_site_info = (self.conf.observing_site.longitude,
                              self.conf.observing_site.latitude)
        self.wait_for_scheduler = not self.opts.no_scheduler
        self.observation_proposals_counted = 1
        self.target_proposals_counted = 1
        self.socs_timeout = 180.0  # seconds
        if self.opts.scheduler_timeout > self.socs_timeout:
            self.socs_timeout = self.opts.scheduler_timeout
Exemplo n.º 7
0
class TestFieldDatabase(unittest.TestCase):
    def setUp(self):
        self.fields_db = FieldsDatabase()
        self.query = "select * from Field limit 2;"

    def test_basic_information_after_creation(self):
        self.assertEqual(self.fields_db.db_name, "Fields.db")
        self.assertIsNotNone(self.fields_db.connect)

    def test_opsim3_userregions(self):
        result = self.fields_db.get_opsim3_userregions(self.query)
        truth_result = """userRegion = 0.00,-90.00,0.03
userRegion = 180.00,-87.57,0.03"""
        self.assertEqual(result, truth_result)

    def test_get_ra_dec_arrays(self):
        ra, dec = self.fields_db.get_ra_dec_arrays(self.query)
        self.assertEqual(ra.size, 2)
        self.assertEqual(dec.size, 2)
        self.assertEqual(ra[1], 180.0)
        self.assertAlmostEqual(dec[1], -87.57, delta=1e-2)

    def test_get_rows(self):
        rows = self.fields_db.get_rows(self.query)
        self.assertIsInstance(rows, list)
        self.assertEqual(len(rows), 2)
        self.assertEqual(len(rows[0]), 8)

    def test_get_field_set(self):
        field_set = self.fields_db.get_field_set(self.query)
        truth_set = set()
        truth_set.add((1, 3.5, 0.0, -90.0, -57.068082, -27.128251, -89.93121,
                       -66.561358))
        truth_set.add((2, 3.5, 180.0, -87.568555, -57.663825, -24.756541,
                       -96.024547, -66.442665))
        self.assertEqual(len(field_set), 2)
        self.assertSetEqual(field_set, truth_set)
Exemplo n.º 8
0
 def test_proposal_fields(self):
     fd = FieldsDatabase()
     fs = FieldSelection()
     ids = self.prop.proposal_fields(fd, fs)
     self.assertEqual(len(ids), 233)
Exemplo n.º 9
0
class Simulator(object):
    """Main class for the survey simulation.

    This class is responsible for setting up, running and shutting down the LSST survey simulation.

    Attributes
    ----------
    opts : argparse.Namespace
        The options returned by the ArgumentParser instance.
    conf : :class:`.SimulationConfig`
        The simulation configuration instance.
    db : :class:`.SocsDatabase`
        The simulation database instance.
    fractional_duration : float
        The length in years for the simulated survey.
    time_handler : :class:`.TimeHandler`
        The simulation time handling instance.
    log : logging.Logger
        The logging instance.
    sal : :class:`.SalManager`
        The instance that manages interactions with the SAL.
    seq : :class:`.Sequencer`
        The sequencer instance.
    dh : :class:`.DowntimeHandler`
        The downtime handler instance.
    conf_comm : :class:`.ConfigurationCommunicator`
        The configuration communicator instance.
    cloud_model : :class:`.CloudModel`
        The cloud model instance.
    seeing_model : :class:`.SeeingModel`
        The seeing model instance.
    field_database : lsst.sims.survey.fields.FieldsDatabase
        The instance of the fields database.
    field_selection : lsst.sims.survey.fields.FieldSelection
        The instance of the field selector.
    """
    def __init__(self, options, configuration, database):
        """Initialize the class.

        Parameters
        ----------
        options : argparse.Namespace
            The instance returned by ArgumentParser containing the command-line options.
        configuration : :class:`.SimulationConfig`
            The simulation configuration instance.
        database : :class:`.SocsDatabase`
            The simulation database instance.
        """
        self.opts = options
        self.conf = configuration
        self.db = database
        if self.opts.frac_duration == -1:
            self.fractional_duration = self.conf.survey.duration
        else:
            self.fractional_duration = self.opts.frac_duration
            self.conf.survey.duration = self.opts.frac_duration
        self.time_handler = TimeHandler(self.conf.survey.start_date)
        self.log = logging.getLogger("kernel.Simulator")
        self.sal = SalManager()
        self.seq = Sequencer(self.conf.observing_site,
                             self.conf.survey.idle_delay)
        self.dh = DowntimeHandler()
        self.conf_comm = ConfigurationCommunicator()
        self.sun = Sun()
        self.cloud_model = CloudModel(self.time_handler)
        self.seeing_model = SeeingModel(self.time_handler)
        self.field_database = FieldsDatabase()
        self.field_selection = FieldSelection()
        self.obs_site_info = (self.conf.observing_site.longitude,
                              self.conf.observing_site.latitude)
        self.wait_for_scheduler = not self.opts.no_scheduler
        self.observation_proposals_counted = 1
        self.target_proposals_counted = 1
        self.socs_timeout = 180.0  # seconds
        if self.opts.scheduler_timeout > self.socs_timeout:
            self.socs_timeout = self.opts.scheduler_timeout

    @property
    def duration(self):
        """int: The duration of the simulation in days.
        """
        return round(self.fractional_duration * DAYS_IN_YEAR)

    def end_night(self):
        """Perform actions at the end of the night.
        """
        self.db.write()
        self.seq.end_night()

    def finalize(self):
        """Perform finalization steps.

        This function handles finalization of the :class:`.SalManager` and :class:`.Sequencer` instances.
        """
        self.seq.finalize()
        self.sal.finalize()
        self.log.info("Ending simulation")

    def gather_proposal_history(self, phtype, topic):
        """Gather the proposal history from the current target.

        Parameters
        ----------
        phtype : str
            The type of the proposal history (target or observation).
        topic : :class:`scheduler_targetC` or :class:`scheduler_interestedProposalC`
            The topic instance to gather the observation proposal information from.
        """
        if phtype == "observation":
            for i in range(topic.num_proposals):
                self.db.append_data(
                    "observation_proposal_history",
                    ObsProposalHistory(
                        self.observation_proposals_counted,
                        topic.proposal_Ids[i], topic.proposal_values[i],
                        topic.proposal_needs[i], topic.proposal_bonuses[i],
                        topic.proposal_boosts[i], topic.observationId))
                self.observation_proposals_counted += 1
        if phtype == "target":
            for i in range(topic.num_proposals):
                self.db.append_data(
                    "target_proposal_history",
                    TargetProposalHistory(
                        self.target_proposals_counted, topic.proposal_Ids[i],
                        topic.proposal_values[i], topic.proposal_needs[i],
                        topic.proposal_bonuses[i], topic.proposal_boosts[i],
                        topic.targetId))
                self.target_proposals_counted += 1

    def get_target_from_scheduler(self):
        """Get target from scheduler.

        This function provides the mechanism for getting the target from the
        Scheduler. Currently, a while loop is required to do this.
        """
        lasttime = time.time()
        while self.wait_for_scheduler:
            rcode = self.sal.manager.getNextSample_target(self.target)
            if rcode == 0 and self.target.num_exposures != 0:
                break
            else:
                tf = time.time()
                if (tf - lasttime) > self.socs_timeout:
                    raise SchedulerTimeoutError(
                        "The Scheduler is not serving targets!")

    def initialize(self):
        """Perform initialization steps.

        This function handles initialization of the :class:`.SalManager` and :class:`.Sequencer` instances and
        gathering the necessary telemetry topics.
        """
        self.log.info("Initializing simulation")
        self.log.info("Simulation Session Id = {}".format(self.db.session_id))
        self.sal.initialize()
        self.seq.initialize(self.sal, self.conf.observatory)
        self.dh.initialize(self.conf.downtime)
        self.dh.write_downtime_to_db(self.db)
        self.cloud_model.initialize(self.conf.environment.cloud_db)
        self.seeing_model.initialize(self.conf.environment,
                                     self.conf.observatory.filters)
        self.conf_comm.initialize(self.sal, self.conf)
        self.comm_time = self.sal.set_publish_topic("timeHandler")
        self.target = self.sal.set_subscribe_topic("target")
        self.cloud = self.sal.set_publish_topic("cloud")
        self.seeing = self.sal.set_publish_topic("seeing")
        self.filter_swap = self.sal.set_subscribe_topic("filterSwap")
        self.interested_proposal = self.sal.set_subscribe_topic(
            "interestedProposal")
        self.log.info("Finishing simulation initialization")

    def run(self):
        """Run the simulation.
        """
        self.log.info("Starting simulation")

        self.conf_comm.run()
        self.save_configuration()
        self.save_proposal_information()
        self.save_field_information()

        self.log.debug("Duration = {}".format(self.duration))
        for night in range(1, int(self.duration) + 1):
            self.start_night(night)

            while self.time_handler.current_timestamp < self.end_of_night:

                self.comm_time.timestamp = self.time_handler.current_timestamp
                self.log.log(
                    LoggingLevel.EXTENSIVE.value,
                    "Timestamp sent: {:.6f}".format(
                        self.time_handler.current_timestamp))
                self.sal.put(self.comm_time)

                observatory_state = self.seq.get_observatory_state(
                    self.time_handler.current_timestamp)
                self.log.log(
                    LoggingLevel.EXTENSIVE.value,
                    "Observatory State: {}".format(
                        topic_strdict(observatory_state)))
                self.sal.put(observatory_state)

                self.cloud_model.set_topic(self.time_handler, self.cloud)
                self.sal.put(self.cloud)

                self.seeing_model.set_topic(self.time_handler, self.seeing)
                self.sal.put(self.seeing)

                self.get_target_from_scheduler()

                observation, slew_info, exposure_info = self.seq.observe_target(
                    self.target, self.time_handler)
                # Add a few more things to the observation
                observation.night = night
                elapsed_time = self.time_handler.time_since_given(
                    observation.observation_start_time)
                observation.cloud = self.cloud_model.get_cloud(elapsed_time)
                seeing_values = self.seeing_model.calculate_seeing(
                    elapsed_time, observation.filter, observation.airmass)
                observation.seeing_fwhm_500 = seeing_values[0]
                observation.seeing_fwhm_geom = seeing_values[1]
                observation.seeing_fwhm_eff = seeing_values[2]

                visit_exposure_time = sum([
                    observation.exposure_times[i]
                    for i in range(observation.num_exposures)
                ])
                observation.five_sigma_depth = m5_flat_sed(
                    observation.filter, observation.sky_brightness,
                    observation.seeing_fwhm_eff, visit_exposure_time,
                    observation.airmass)

                # Pass observation back to scheduler
                self.log.log(LoggingLevel.EXTENSIVE.value, "tx: observation")
                self.sal.put(observation)

                # Wait for interested proposal information
                lastconfigtime = time.time()
                while self.wait_for_scheduler:
                    rcode = self.sal.manager.getNextSample_interestedProposal(
                        self.interested_proposal)
                    if rcode == 0 and self.interested_proposal.num_proposals >= 0:
                        self.log.log(LoggingLevel.EXTENSIVE.value,
                                     "Received interested proposal.")
                        break
                    else:
                        tf = time.time()
                        if (tf - lastconfigtime) > 5.0:
                            self.log.log(
                                LoggingLevel.EXTENSIVE.value,
                                "Failed to receive interested proposal due to timeout."
                            )
                            break

                if self.wait_for_scheduler and observation.targetId != -1:
                    self.db.append_data("target_history", self.target)
                    self.db.append_data("observation_history", observation)
                    self.gather_proposal_history("target", self.target)
                    self.gather_proposal_history("observation",
                                                 self.interested_proposal)
                    for slew_type, slew_data in slew_info.items():
                        self.log.log(
                            LoggingLevel.TRACE.value,
                            "{}, {}".format(slew_type, type(slew_data)))
                        if isinstance(slew_data, list):
                            for data in slew_data:
                                self.db.append_data(slew_type, data)
                        else:
                            self.db.append_data(slew_type, slew_data)
                    for exposure_type in exposure_info:
                        self.log.log(LoggingLevel.TRACE.value,
                                     "Adding {} to DB".format(exposure_type))
                        self.log.log(
                            LoggingLevel.TRACE.value,
                            "Number of exposures being added: "
                            "{}".format(len(exposure_info[exposure_type])))
                        for exposure in exposure_info[exposure_type]:
                            self.db.append_data(exposure_type, exposure)

            self.end_night()
            self.start_day()

    def save_configuration(self):
        """Save the configuration information to the DB.
        """
        c = self.conf.config_list()
        c.extend(self.seq.sky_brightness_config())
        c.append(("scheduler/version", self.opts.scheduler_version))
        c.append(("dateloc/version", dateloc_version.__version__))
        c.append(("astrosky_model/version", astrosky_version.__version__))
        c.append(("observatory_model/version", obs_mod_version.__version__))
        config_list = [
            write_config((i + 1, x[0], x[1]), self.db.session_id)
            for i, x in enumerate(c)
        ]
        self.db.write_table("config", config_list)

    def save_field_information(self):
        """Save the field information to the DB.
        """
        query = self.field_selection.get_all_fields()
        fields = self.field_database.get_field_set(query)
        field_list = [
            write_field(field, self.db.session_id) for field in sorted(fields)
        ]
        self.db.write_table("field", field_list)

    def save_proposal_information(self):
        """Save the active proposal information to the DB.
        """
        proposals = []
        num_proposals = 1
        proposal_fields = {}
        if self.conf.science.general_props.active is not None:
            for general_config in self.conf.science.general_props.active:
                proposals.append(
                    write_proposal(
                        ProposalInfo(num_proposals, general_config.name,
                                     "General"), self.db.session_id))
                proposal_fields[
                    num_proposals] = general_config.proposal_fields(
                        self.field_database, self.field_selection)
                num_proposals += 1
        if self.conf.science.sequence_props.active is not None:
            for sequence_config in self.conf.science.sequence_props.active:
                proposals.append(
                    write_proposal(
                        ProposalInfo(num_proposals, sequence_config.name,
                                     "Sequence"), self.db.session_id))
                proposal_fields[
                    num_proposals] = sequence_config.proposal_fields()
                num_proposals += 1
        self.db.write_table("proposal", proposals)
        self.write_proposal_fields(proposal_fields)

    def start_day(self):
        """Perform actions at the start of day.

        This function performs all actions at the start of day. This involves:

        * Sending a timestamp to the Scheduler
        * Checking if the Scheduler requests a filter swap
        * Peforming the filter swap if requested
        """
        self.comm_time.timestamp = self.time_handler.current_timestamp
        self.log.debug("Start of day {} at {}".format(
            self.comm_time.night, self.time_handler.current_timestring))
        self.log.log(
            LoggingLevel.EXTENSIVE.value,
            "Daytime Timestamp sent: {:.6f}".format(
                self.time_handler.current_timestamp))
        self.sal.put(self.comm_time)

        self.filter_swap = self.sal.get_topic("filterSwap")
        lastconfigtime = time.time()
        while self.wait_for_scheduler:
            rcode = self.sal.manager.getNextSample_filterSwap(self.filter_swap)
            if rcode == 0 and self.filter_swap.filter_to_unmount != '':
                break
            else:
                tf = time.time()
                if (tf - lastconfigtime) > 5.0:
                    break

        self.seq.start_day(self.filter_swap)

    def start_night(self, night):
        """Perform actions at the start of the night.

        Parameters
        ----------
        night : int
            The current night.
        """
        self.log.info("Night {}".format(night))
        self.seq.start_night(night, self.duration)
        self.comm_time.night = night

        self.seq.sky_model.update(self.time_handler.current_timestamp)
        (set_timestamp,
         rise_timestamp) = self.seq.sky_model.get_night_boundaries(
             self.conf.sched_driver.night_boundary)

        delta = math.fabs(self.time_handler.current_timestamp - set_timestamp)
        self.time_handler.update_time(delta, "seconds")

        self.log.debug("Start of night {} at {}".format(
            night, self.time_handler.current_timestring))

        self.end_of_night = rise_timestamp

        end_of_night_str = self.time_handler.future_timestring(
            0, "seconds", timestamp=self.end_of_night)
        self.log.debug("End of night {} at {}".format(night, end_of_night_str))

        self.db.clear_data()

        down_days = self.dh.get_downtime(night)
        if down_days:
            self.log.info("Observatory is down: {} days.".format(down_days))
            self.comm_time.is_down = True
            self.comm_time.down_duration = down_days
            self.comm_time.timestamp = self.time_handler.current_timestamp
            self.log.log(
                LoggingLevel.EXTENSIVE.value,
                "Downtime Start Night Timestamp sent: {:.6f}".format(
                    self.time_handler.current_timestamp))
            self.sal.put(self.comm_time)
            observatory_state = self.seq.get_observatory_state(
                self.time_handler.current_timestamp)
            self.log.log(
                LoggingLevel.EXTENSIVE.value,
                "Downtime Observatory State: {}".format(
                    topic_strdict(observatory_state)))
            self.sal.put(observatory_state)

            delta = math.fabs(self.time_handler.current_timestamp -
                              self.end_of_night) + SECONDS_IN_MINUTE
            self.time_handler.update_time(delta, "seconds")
        else:
            self.comm_time.is_down = False
            self.comm_time.down_duration = down_days

    def write_proposal_fields(self, prop_fields):
        """Transform the proposal field information and write to the survey database.

        Parameters
        ----------
        prop_fields : dict
            The set of proposal fields information.
        """
        num_proposal_fields = 1
        data = []
        for prop_id, field_ids in prop_fields.items():
            for field_id in field_ids:
                data.append(
                    write_proposal_field(
                        ProposalFieldInfo(num_proposal_fields, prop_id,
                                          field_id), self.db.session_id))
                num_proposal_fields += 1
        self.db.write_table("proposal_field", data)
Exemplo n.º 10
0
 def setUp(self):
     self.fields_db = FieldsDatabase()
     self.query = "select * from Field limit 2;"