Exemplo n.º 1
0
    def __init__(self,
                 input_size,
                 label_num,
                 dropout,
                 hidden_size=300,
                 eval_transitions=False):
        super().__init__()
        self.label_num = label_num
        self.mlp_rel_h = MLP(input_size,
                             hidden_size,
                             dropout,
                             activation=nn.ReLU)
        self.mlp_rel_d = MLP(input_size,
                             hidden_size,
                             dropout,
                             activation=nn.ReLU)

        self.rel_atten = Bilinear(hidden_size,
                                  hidden_size,
                                  label_num,
                                  bias_x=True,
                                  bias_y=True,
                                  expand=True)
        self.rel_crf = CRF(label_num)
        self.eval_transitions = eval_transitions
Exemplo n.º 2
0
    def __init__(self, input_size, label_num, dropout, arc_hidden_size,
                 rel_hidden_size, **kwargs):
        super(Graph, self).__init__(input_size, label_num, dropout)
        arc_dropout = kwargs.pop('arc_dropout', dropout)
        rel_dropout = kwargs.pop('rel_dropout', dropout)
        activation = kwargs.pop('activation', {})
        self.mlp_arc_h = MLP(input_size, arc_hidden_size, arc_dropout,
                             **activation)
        self.mlp_arc_d = MLP(input_size, arc_hidden_size, arc_dropout,
                             **activation)
        self.mlp_rel_h = MLP(input_size, rel_hidden_size, rel_dropout,
                             **activation)
        self.mlp_rel_d = MLP(input_size, rel_hidden_size, rel_dropout,
                             **activation)

        self.arc_atten = Bilinear(arc_hidden_size,
                                  arc_hidden_size,
                                  1,
                                  bias_x=True,
                                  bias_y=False,
                                  expand=True)
        self.rel_atten = Bilinear(rel_hidden_size,
                                  rel_hidden_size,
                                  label_num,
                                  bias_x=True,
                                  bias_y=True,
                                  expand=True)
Exemplo n.º 3
0
    def __init__(self, input_size, label_num, dropout: float = 0.2, hidden_size=None, **kwargs):
        super().__init__(input_size, label_num, dropout)
        activation = kwargs.pop('activation', {'LeakyReLU': {}})
        self.mlp_rel_h = MLP(input_size, hidden_size, dropout=dropout, **activation)
        self.mlp_rel_d = MLP(input_size, hidden_size, dropout=dropout, **activation)
        self.biaffine = nn.Bilinear(hidden_size, hidden_size, label_num, bias_x=True, bias_y=True, expand=True)

        self.crf = nn.CRF(label_num)
Exemplo n.º 4
0
    def __init__(self, input_size, label_num, dropout,
                 arc_hidden_size=500, rel_hidden_size=100, loss_interpolation=0.4, loss_func=dep_loss):
        super().__init__()
        self.label_num = label_num
        self.loss_interpolation = loss_interpolation
        self.mlp_arc_h = MLP(input_size, arc_hidden_size, dropout, activation=nn.ReLU)
        self.mlp_arc_d = MLP(input_size, arc_hidden_size, dropout, activation=nn.ReLU)
        self.mlp_rel_h = MLP(input_size, rel_hidden_size, dropout, activation=nn.ReLU)
        self.mlp_rel_d = MLP(input_size, rel_hidden_size, dropout, activation=nn.ReLU)

        self.arc_atten = Bilinear(arc_hidden_size, arc_hidden_size, 1, bias_x=True, bias_y=False, expand=True)
        self.rel_atten = Bilinear(rel_hidden_size, rel_hidden_size, label_num, bias_x=True, bias_y=True, expand=True)

        self.loss_func = loss_func
Exemplo n.º 5
0
    def __init__(self, input_size, label_num, dropout, hidden_size=300):
        super().__init__()
        self.label_num = label_num

        self.mlp_rel_h = MLP([input_size, hidden_size],
                             output_dropout=dropout,
                             output_activation=nn.ReLU)
        self.mlp_rel_d = MLP([input_size, hidden_size],
                             output_dropout=dropout,
                             output_activation=nn.ReLU)

        self.rel_atten = Bilinear(hidden_size,
                                  hidden_size,
                                  label_num,
                                  bias_x=True,
                                  bias_y=True,
                                  expand=True)
        self.crf = CRF(label_num)
Exemplo n.º 6
0
 def __init__(self,
              input_size,
              hidden_sizes,
              num_labels,
              dropout,
              use_cls=False,
              use_sep=False,
              use_crf=False,
              crf_reduction='sum'):
     super().__init__()
     self.use_cls = use_cls
     self.use_sep = use_sep
     self.linear = MLP([input_size, *hidden_sizes, num_labels],
                       dropout=dropout)
     if use_crf:
         self.crf = CRF(num_labels, batch_first=True)
         self.crf_reduction = crf_reduction
     else:
         self.crf = None
Exemplo n.º 7
0
class MLPClassfier(nn.Module):
    def __init__(self,
                 input_size,
                 hidden_sizes,
                 num_labels,
                 dropout,
                 use_cls=False,
                 use_sep=False,
                 use_crf=False,
                 crf_reduction='sum'):
        super().__init__()
        self.use_cls = use_cls
        self.use_sep = use_sep
        self.linear = MLP([input_size, *hidden_sizes, num_labels],
                          dropout=dropout)
        if use_crf:
            self.crf = CRF(num_labels, batch_first=True)
            self.crf_reduction = crf_reduction
        else:
            self.crf = None

    def forward(self,
                input,
                attention_mask=None,
                word_index=None,
                word_attention_mask=None,
                labels=None,
                is_processed=False) -> TokenClassifierResult:
        if not is_processed:
            if not self.use_cls:
                input = input[:, 1:, :]
            if not self.use_cls:
                input = input[:, :-1, :]

            if word_attention_mask is None:
                assert word_index is None
                bias = int(not self.use_cls) + int(not self.use_sep)
                word_attention_mask = attention_mask[:, bias:] == 1

            if word_index is not None:
                input = torch.gather(input,
                                     dim=1,
                                     index=word_index.unsqueeze(-1).expand(
                                         -1, -1, input.size(-1)))

        logits = self.linear.forward(input)

        loss = None

        if labels is not None:
            loss_fct = nn.CrossEntropyLoss()
            # Only keep active parts of the loss
            if word_attention_mask is not None and self.crf is not None:
                logits = F.log_softmax(logits, dim=-1)
                loss = -self.crf.forward(logits,
                                         labels,
                                         word_attention_mask,
                                         reduction=self.crf_reduction)
            elif word_attention_mask is not None:
                active_loss = word_attention_mask.view(-1)
                active_logits = logits.view(
                    -1, self.classifier.out_features)[active_loss]
                active_labels = labels.view(-1)[active_loss]
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.classifier.out_features),
                                labels.view(-1))

        decoded = None
        if not self.training and self.crf is not None:
            decoded = self.crf.decode(emissions=logits,
                                      mask=word_attention_mask)
            if self.use_cls:
                decoded = [sent[1:] for sent in decoded]
                labels = labels[:, 1:]
            if self.use_sep:
                decoded = [sent[:-1] for sent in decoded]
                labels = labels[:, :-1]

        return TokenClassifierResult(loss=loss,
                                     logits=logits,
                                     decoded=decoded,
                                     labels=labels)
Exemplo n.º 8
0
    def __init__(self,
                 input_size,
                 label_num,
                 dropout,
                 lstm_hidden_size=600,
                 lstm_num_layers=3,
                 bin_hidden_size=150,
                 arc_hidden_size=600,
                 rel_hidden_size=600,
                 loss_interpolation=0.4,
                 inference='mfvi',
                 max_iter=3):
        super().__init__()
        self.label_num = label_num
        self.loss_interpolation = loss_interpolation

        if lstm_num_layers > 0:
            self.lstm = LSTM(input_size=input_size,
                             hidden_size=lstm_hidden_size,
                             num_layers=lstm_num_layers,
                             bidirectional=True,
                             dropout=dropout)
            self.lstm_dropout = SharedDropout(p=dropout)
            hidden_size = lstm_hidden_size * 2
        else:
            self.lstm = None
            hidden_size = input_size

        self.mlp_bin_d = MLP([hidden_size, bin_hidden_size],
                             output_dropout=dropout)
        self.mlp_bin_h = MLP([hidden_size, bin_hidden_size],
                             output_dropout=dropout)
        self.mlp_bin_g = MLP([hidden_size, bin_hidden_size],
                             output_dropout=dropout)
        self.mlp_arc_h = MLP([hidden_size, arc_hidden_size],
                             output_dropout=dropout)
        self.mlp_arc_d = MLP([hidden_size, arc_hidden_size],
                             output_dropout=dropout)
        self.mlp_rel_h = MLP([hidden_size, rel_hidden_size],
                             output_dropout=dropout)
        self.mlp_rel_d = MLP([hidden_size, rel_hidden_size],
                             output_dropout=dropout)

        self.sib_attn = Triaffine(bin_hidden_size, bias_x=True, bias_y=True)
        self.cop_attn = Triaffine(bin_hidden_size, bias_x=True, bias_y=True)
        self.grd_attn = Triaffine(bin_hidden_size, bias_x=True, bias_y=True)
        self.arc_atten = Bilinear(arc_hidden_size,
                                  arc_hidden_size,
                                  1,
                                  bias_x=True,
                                  bias_y=True,
                                  expand=True)
        self.rel_atten = Bilinear(rel_hidden_size,
                                  rel_hidden_size,
                                  label_num,
                                  bias_x=True,
                                  bias_y=True,
                                  expand=True)

        self.vi = (MFVISemanticDependency
                   if inference == 'mfvi' else LBPSemanticDependency)(max_iter)