Exemplo n.º 1
0
def histogram(a, bins=10, bin_center = False, range=None, normed=False, weights=None, density=None):
    """
    Histogram function that can take as bins either the center (cfr. matlab hist) or bin-edges.
    
    Args: 
        :bin_center:
            | False, optional
            | False: if :bins: int, str or sequence of scalars:
            |       default to numpy.histogram (uses bin edges).
            | True: if :bins: is a sequence of scalars:
            |         bins (containing centers) are transformed to edges
            |         and nump.histogram is run. 
            |         Mimicks matlab hist (uses bin centers).
        
    Note:
        For other armuments and output, see ?numpy.histogram
        
    Returns:
        :returns:
            | ndarray with histogram
    """
    if (isinstance(bins, list) |  isinstance(bins, np.ndarray)) & (bin_center == True):
        if len(bins) == 1:
            edges = np.hstack((bins[0],np.inf))
        else:
            centers = bins
            d = np.diff(centers)/2
            edges = np.hstack((centers[0]-d[0], centers[:-1] + d, centers[-1] + d[-1]))
            edges[1:] = edges[1:] + np.finfo(float).eps
        return np.histogram(a, bins=edges, range=range, normed=normed, weights=weights, density=density)

    else:
        return np.histogram(a, bins=bins, range=range, normed=normed, weights=weights, density=density)
Exemplo n.º 2
0
def _rgb_delinearizer(rgblin, tr, tr_type = 'lut'):
    """ De-linearize linear rgblin using tr tone response function or lut """
    if tr_type == 'gog':
        return np.array([TRi(rgblin[:,i],*tr[i]) for i in range(3)]).T
    elif tr_type == 'lut':
        maxv = (tr.shape[0] - 1)
        bins = np.vstack((tr-np.diff(tr,axis=0,prepend=0)/2,tr[-1,:]+0.01)) # create bins
        idxs = np.array([(np.digitize(rgblin[:,i],bins[:,i]) - 1)  for i in range(3)]).T # find bin indices
        idxs[idxs>maxv] = maxv 
        rgb = np.arange(tr.shape[0])[idxs]
        return rgb
Exemplo n.º 3
0
def getwld(wl):
    """
    Get wavelength spacing. 
    
    Args:
        :wl: 
            | ndarray with wavelengths
        
    Returns:
        :returns: 
            | - float:  for equal wavelength spacings
            | - ndarray (.shape = (n,)): for unequal wavelength spacings
    """
    d = np.diff(wl)
    dl = (np.hstack((d[0], d[0:-1] / 2.0, d[-1])) + np.hstack(
        (0.0, d[1:] / 2.0, 0.0)))
    if np.array_equal(dl, dl.mean() * np.ones(dl.shape)): dl = dl[0]
    return dl
Exemplo n.º 4
0
def calibrate(rgbcal, xyzcal, L_type = 'lms', tr_type = 'lut', cieobs = '1931_2', 
              nbit = 8, cspace = 'lab', avg = lambda x: ((x**2).mean()**0.5), ensure_increasing_lut_at_low_rgb = 0.2,
              verbosity = 1, sep=',',header=None): 
    """
    Calculate TR parameters/lut and conversion matrices.
    
    Args:
        :rgbcal:
            | ndarray [Nx3] or string with filename of RGB values 
            | rgcal must contain at least the following type of settings:
            | - pure R,G,B: e.g. for pure R: (R != 0) & (G==0) & (B == 0)
            | - white(s): R = G = B = 2**nbit-1
            | - gray(s): R = G = B
            | - black(s): R = G = B = 0
            | - binary colors: cyan (G = B, R = 0), yellow (G = R, B = 0), magenta (R = B, G = 0)
        :xyzcal:
            | ndarray [Nx3] or string with filename of measured XYZ values for 
            | the RGB settings in rgbcal.
        :L_type:
            | 'lms', optional
            | Type of response to use in the derivation of the Tone-Response curves.
            | options:
            |  - 'lms': use cone fundamental responses: L vs R, M vs G and S vs B 
            |           (reduces noise and generally leads to more accurate characterization) 
            |  - 'Y': use the luminance signal: Y vs R, Y vs G, Y vs B
        :tr_type:
            | 'lut', optional
            | options:
            |  - 'lut': Derive/specify Tone-Response as a look-up-table
            |  - 'gog': Derive/specify Tone-Response as a gain-offset-gamma function
        :cieobs:
            | '1931_2', optional
            | CIE CMF set used to determine the XYZ tristimulus values
            | (needed when L_type == 'lms': determines the conversion matrix to
            | convert xyz to lms values)
        :nbit:
            | 8, optional
            | RGB values in nbit format (e.g. 8, 16, ...)
        :cspace:
            | color space or chromaticity diagram to calculate color differences in
            | when optimizing the xyz_to_rgb and rgb_to_xyz conversion matrices.
        :avg:
            | lambda x: ((x**2).mean()**0.5), optional
            | Function used to average the color differences of the individual RGB settings
            | in the optimization of the xyz_to_rgb and rgb_to_xyz conversion matrices.
        :ensure_increasing_lut_at_low_rgb:
            | 0.2 or float (max = 1.0) or None, optional
            | Ensure an increasing lut by setting all values below the RGB with the maximum
            | zero-crossing of np.diff(lut) and RGB/RGB.max() values of :ensure_increasing_lut_at_low_rgb:
            | (values of 0.2 are a good rule of thumb value)
            | Non-strictly increasing lut values can be caused at low RGB values due
            | to noise and low measurement signal. 
            | If None: don't force lut, but keep as is.
        :verbosity:
            | 1, optional
            | > 0: print and plot optimization results
        :sep:
            | ',', optional
            | separator in files with rgbcal and xyzcal data
        :header:
            | None, optional
            | header specifier for files with rgbcal and xyzcal data 
            | (see pandas.read_csv)
            
    Returns:
        :M:
            | linear rgb to xyz conversion matrix
        :N:
            | xyz to linear rgb conversion matrix
        :tr:
            | Tone Response function parameters or lut
        :xyz_black:
            | ndarray with XYZ tristimulus values of black
        :xyz_white:
            | ndarray with tristimlus values of white
    """
    
    # process rgb, xyzcal inputs:
    rgbcal, xyzcal = _parse_rgbxyz_input(rgbcal, xyz = xyzcal, sep = sep, header=header)
    
    # get black-positions and average black xyz (flare):
    p_blacks = (rgbcal[:,0]==0) & (rgbcal[:,1]==0) & (rgbcal[:,2]==0)
    xyz_black = xyzcal[p_blacks,:].mean(axis=0,keepdims=True)
    
    # Calculate flare corrected xyz:
    xyz_fc = xyzcal - xyz_black
    
    # get positions of pure r, g, b values:
    p_pure = [(rgbcal[:,1]==0) & (rgbcal[:,2]==0), 
              (rgbcal[:,0]==0) & (rgbcal[:,2]==0), 
              (rgbcal[:,0]==0) & (rgbcal[:,1]==0)] 
    
    # set type of L-response to use: Y for R,G,B or L,M,S for R,G,B:
    if L_type == 'Y':
        L = np.array([xyz_fc[:,1] for i in range(3)]).T
    elif L_type == 'lms':
        lms = (math.normalize_3x3_matrix(_CMF[cieobs]['M'].copy()) @ xyz_fc.T).T
        L = np.array([lms[:,i] for i in range(3)]).T
        
    # Get rgb linearizer parameters or lut and apply to all rgb's:
    if tr_type == 'gog':
        par = np.array([sp.optimize.curve_fit(TR, rgbcal[p_pure[i],i], L[p_pure[i],i]/L[p_pure[i],i].max(), p0=[1,0,1])[0] for i in range(3)]) # calculate parameters of each TR
        tr = par
    elif tr_type == 'lut':
        dac = np.arange(2**nbit)
        # lut = np.array([cie_interp(np.vstack((rgbcal[p_pure[i],i],L[p_pure[i],i]/L[p_pure[i],i].max())), dac, kind ='cubic')[1,:] for i in range(3)]).T
        lut = np.array([sp.interpolate.PchipInterpolator(rgbcal[p_pure[i],i],L[p_pure[i],i]/L[p_pure[i],i].max())(dac) for i in range(3)]).T # use this one to avoid potential overshoot with cubic spline interpolation (but slightly worse performance)
        lut[lut<0] = 0
          
        # ensure monotonically increasing lut values for low signal:
        if ensure_increasing_lut_at_low_rgb is not None:
            #ensure_increasing_lut_at_low_rgb = 0.2 # anything below that has a zero-crossing for diff(lut) will be set to zero
            for i in range(3):
                p0 = np.where((np.diff(lut[dac/dac.max() < ensure_increasing_lut_at_low_rgb,i])<=0))[0]
                if p0.any():
                    p0 = range(0,p0[-1])
                    lut[p0,i] = 0
        tr = lut

    
    # plot:
    if verbosity > 0:
        colors = 'rgb'
        linestyles = ['-','--',':']
        rgball = np.repeat(np.arange(2**8)[:,None],3,axis=1)
        Lall = _rgb_linearizer(rgball, tr, tr_type = tr_type)
        plt.figure()
        for i in range(3):
            plt.plot(rgbcal[p_pure[i],i],L[p_pure[i],i]/L[p_pure[i],i].max(),colors[i]+'o')
            plt.plot(rgball[:,i],Lall[:,i],colors[i]+linestyles[i],label=colors[i])
        plt.xlabel('Display RGB')
        plt.ylabel('Linear RGB')
        plt.legend()
        plt.title('Tone response curves')
    
    # linearize all rgb values and clamp to 0
    rgblin = _rgb_linearizer(rgbcal, tr, tr_type = tr_type) 
 
    # get rgblin to xyz_fc matrix:
    M = np.linalg.lstsq(rgblin, xyz_fc, rcond=None)[0].T 
    
    # get xyz_fc to rgblin matrix:
    N = np.linalg.inv(M)
    
    # get better approximation for conversion matrices:
    p_grays = (rgbcal[:,0] == rgbcal[:,1]) & (rgbcal[:,0] == rgbcal[:,2])
    p_whites = (rgbcal[:,0] == (2**nbit-1)) & (rgbcal[:,1] == (2**nbit-1)) & (rgbcal[:,2] == (2**nbit-1))
    xyz_white = xyzcal[p_whites,:].mean(axis=0,keepdims=True) # get xyzw for input into xyz_to_lab() or colortf()
    def optfcn(x, rgbcal, xyzcal, tr, xyz_black, cspace, p_grays, p_whites,out,verbosity):
        M = x.reshape((3,3))
        xyzest = rgb_to_xyz(rgbcal, M, tr, xyz_black, tr_type)
        xyzw = xyzcal[p_whites,:].mean(axis=0) # get xyzw for input into xyz_to_lab() or colortf()
        labcal, labest = colortf(xyzcal,tf=cspace,xyzw=xyzw), colortf(xyzest,tf=cspace,xyzw=xyzw) # calculate lab coord. of cal. and est.
        DEs = ((labcal-labest)**2).sum(axis=1)**0.5
        DEg = DEs[p_grays]
        DEw = DEs[p_whites]
        F = (avg(DEs)**2 + avg(DEg)**2 + avg(DEw**2))**0.5
        if verbosity > 1:
            print('\nPerformance of TR + rgb-to-xyz conversion matrix M:')
            print('all: DE(jab): avg = {:1.4f}, std = {:1.4f}'.format(avg(DEs),np.std(DEs)))
            print('grays: DE(jab): avg = {:1.4f}, std = {:1.4f}'.format(avg(DEg),np.std(DEg)))
            print('whites(s) DE(jab): avg = {:1.4f}, std = {:1.4f}'.format(avg(DEw),np.std(DEw)))
        if out == 'F':
            return F
        else:
            return eval(out)
    x0 = M.ravel()
    res = math.minimizebnd(optfcn, x0, args =(rgbcal, xyzcal, tr, xyz_black, cspace, p_grays, p_whites,'F',0), use_bnd=False)
    xf = res['x_final']
    M = optfcn(xf, rgbcal, xyzcal, tr, xyz_black, cspace, p_grays, p_whites,'M',verbosity)
    N = np.linalg.inv(M)
    return M, N, tr, xyz_black, xyz_white
def cie2006cmfsEx(age = 32,fieldsize = 10, wl = None,\
                  var_od_lens = 0, var_od_macula = 0, \
                  var_od_L = 0, var_od_M = 0, var_od_S = 0,\
                  var_shft_L = 0, var_shft_M = 0, var_shft_S = 0,\
                  out = 'LMS', allow_negative_values = False):
    """
    Generate Individual Observer CMFs (cone fundamentals) 
    based on CIE2006 cone fundamentals and published literature 
    on observer variability in color matching and in physiological parameters.
    
    Args:
        :age: 
            | 32 or float or int, optional
            | Observer age
        :fieldsize:
            | 10, optional
            | Field size of stimulus in degrees (between 2° and 10°).
        :wl: 
            | None, optional
            | Interpolation/extraplation of :LMS: output to specified wavelengths.
            | None: output original _WL = np.array([390,780,5])
        :var_od_lens:
            | 0, optional
            | Std Dev. in peak optical density [%] of lens.
        :var_od_macula:
            | 0, optional
            | Std Dev. in peak optical density [%] of macula.
        :var_od_L:
            | 0, optional
            | Std Dev. in peak optical density [%] of L-cone.
        :var_od_M:
            | 0, optional
            | Std Dev. in peak optical density [%] of M-cone.
        :var_od_S:
            | 0, optional
            | Std Dev. in peak optical density [%] of S-cone.
        :var_shft_L:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of L-cone. 
        :var_shft_L:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of M-cone.  
        :var_shft_S:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of S-cone. 
        :out: 
            | 'LMS' or , optional
            | Determines output.
        :allow_negative_values:
            | False, optional
            | Cone fundamentals or color matching functions 
              should not have negative values.
            |     If False: X[X<0] = 0.
            
    Returns:
        :returns: 
            | - 'LMS' : ndarray with individual observer area-normalized 
            |           cone fundamentals. Wavelength have been added.
                
            | [- 'trans_lens': ndarray with lens transmission 
            |      (no wavelengths added, no interpolation)
            |  - 'trans_macula': ndarray with macula transmission 
            |      (no wavelengths added, no interpolation)
            |  - 'sens_photopig' : ndarray with photopigment sens. 
            |      (no wavelengths added, no interpolation)]
            
    References:
         1. `Asano Y, Fairchild MD, and Blondé L (2016). 
         Individual Colorimetric Observer Model. 
         PLoS One 11, 1–19. 
         <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145671>`_
        
         2. `Asano Y, Fairchild MD, Blondé L, and Morvan P (2016). 
         Color matching experiment for highlighting interobserver variability. 
         Color Res. Appl. 41, 530–539. 
         <https://onlinelibrary.wiley.com/doi/abs/10.1002/col.21975>`_
         
         3. `CIE, and CIE (2006). 
         Fundamental Chromaticity Diagram with Physiological Axes - Part I 
         (Vienna: CIE). 
         <http://www.cie.co.at/publications/fundamental-chromaticity-diagram-physiological-axes-part-1>`_ 
         
         4. `Asano's Individual Colorimetric Observer Model 
         <https://www.rit.edu/cos/colorscience/re_AsanoObserverFunctions.php>`_
    """
    fs = fieldsize
    rmd = _INDVCMF_DATA['rmd'].copy()
    LMSa = _INDVCMF_DATA['LMSa'].copy()
    docul = _INDVCMF_DATA['docul'].copy()

    # field size corrected macular density:
    pkOd_Macula = 0.485 * np.exp(-fs / 6.132) * (
        1 + var_od_macula / 100)  # varied peak optical density of macula
    corrected_rmd = rmd * pkOd_Macula

    # age corrected lens/ocular media density:
    if (age <= 60):
        correct_lomd = docul[:1] * (1 + 0.02 * (age - 32)) + docul[1:2]
    else:
        correct_lomd = docul[:1] * (1.56 + 0.0667 * (age - 60)) + docul[1:2]
    correct_lomd = correct_lomd * (1 + var_od_lens / 100
                                   )  # varied overall optical density of lens

    # Peak Wavelength Shift:
    wl_shifted = np.empty(LMSa.shape)
    wl_shifted[0] = _WL + var_shft_L
    wl_shifted[1] = _WL + var_shft_M
    wl_shifted[2] = _WL + var_shft_S

    LMSa_shft = np.empty(LMSa.shape)
    kind = 'cubic'
    LMSa_shft[0] = sp.interpolate.interp1d(wl_shifted[0],
                                           LMSa[0],
                                           kind=kind,
                                           bounds_error=False,
                                           fill_value="extrapolate")(_WL)
    LMSa_shft[1] = sp.interpolate.interp1d(wl_shifted[1],
                                           LMSa[1],
                                           kind=kind,
                                           bounds_error=False,
                                           fill_value="extrapolate")(_WL)
    LMSa_shft[2] = sp.interpolate.interp1d(wl_shifted[2],
                                           LMSa[2],
                                           kind=kind,
                                           bounds_error=False,
                                           fill_value="extrapolate")(_WL)
    #    LMSa[2,np.where(_WL >= _WL_CRIT)] = 0 #np.nan # Not defined above 620nm
    #    LMSa_shft[2,np.where(_WL >= _WL_CRIT)] = 0

    ssw = np.hstack(
        (0, np.sign(np.diff(LMSa_shft[2, :]))
         ))  #detect poor interpolation (sign switch due to instability)
    LMSa_shft[2, np.where((ssw >= 0) & (_WL > 560))] = np.nan

    # corrected LMS (no age correction):
    pkOd_L = (0.38 + 0.54 * np.exp(-fs / 1.333)) * (
        1 + var_od_L / 100)  # varied peak optical density of L-cone
    pkOd_M = (0.38 + 0.54 * np.exp(-fs / 1.333)) * (
        1 + var_od_M / 100)  # varied peak optical density of M-cone
    pkOd_S = (0.30 + 0.45 * np.exp(-fs / 1.333)) * (
        1 + var_od_S / 100)  # varied peak optical density of S-cone

    alpha_lms = 0. * LMSa_shft
    alpha_lms[0] = 1 - 10**(-pkOd_L * (10**LMSa_shft[0]))
    alpha_lms[1] = 1 - 10**(-pkOd_M * (10**LMSa_shft[1]))
    alpha_lms[2] = 1 - 10**(-pkOd_S * (10**LMSa_shft[2]))

    # this fix is required because the above math fails for alpha_lms[2,:]==0
    alpha_lms[2, np.where(_WL >= _WL_CRIT)] = 0

    # Corrected to Corneal Incidence:
    lms_barq = alpha_lms * (10**(-corrected_rmd - correct_lomd)) * np.ones(
        alpha_lms.shape)

    # Corrected to Energy Terms:
    lms_bar = lms_barq * _WL

    # Set NaN values to zero:
    lms_bar[np.isnan(lms_bar)] = 0

    # normalized:
    LMS = 100 * lms_bar / np.nansum(lms_bar, axis=1, keepdims=True)

    # Output extra:
    trans_lens = 10**(-correct_lomd)
    trans_macula = 10**(-corrected_rmd)
    sens_photopig = alpha_lms * _WL

    # Add wavelengths:
    LMS = np.vstack((_WL, LMS))

    if ('xyz' in out.lower().split(',')):
        LMS = lmsb_to_xyzb(LMS,
                           fieldsize,
                           out='xyz',
                           allow_negative_values=allow_negative_values)
        out = out.replace('xyz', 'LMS').replace('XYZ', 'LMS')
    if ('lms' in out.lower().split(',')):
        out = out.replace('lms', 'LMS')

    # Interpolate/extrapolate:
    if wl is None:
        interpolation = None
    else:
        interpolation = 'cubic'
    LMS = spd(LMS, wl=wl, interpolation=interpolation, norm_type='area')

    if (out == 'LMS'):
        return LMS
    elif (out == 'LMS,trans_lens,trans_macula,sens_photopig'):
        return LMS, trans_lens, trans_macula, sens_photopig
    elif (out == 'LMS,trans_lens,trans_macula,sens_photopig,LMSa'):
        return LMS, trans_lens, trans_macula, sens_photopig, LMSa
    else:
        return eval(out)
Exemplo n.º 6
0
def xyz_to_Ydlep(xyz,
                 cieobs=_CIEOBS,
                 xyzw=_COLORTF_DEFAULT_WHITE_POINT,
                 flip_axes=False,
                 SL_max_lambda=None,
                 **kwargs):
    """
    Convert XYZ tristimulus values to Y, dominant (complementary) wavelength
    and excitation purity.

    Args:
        :xyz:
            | ndarray with tristimulus values
        :xyzw:
            | None or ndarray with tristimulus values of a single (!) native white point, optional
            | None defaults to xyz of CIE D65 using the :cieobs: observer.
        :cieobs:
            | luxpy._CIEOBS, optional
            | CMF set to use when calculating spectrum locus coordinates.
        :flip_axes:
            | False, optional
            | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function.
            |          (single xyzw with is not flipped!)
        :SL_max_lambda:
            | None or float, optional
            | Maximum wavelength of spectrum locus before it turns back on itelf in the high wavelength range (~700 nm)
    Returns:
        :Ydlep: 
            | ndarray with Y, dominant (complementary) wavelength
            |  and excitation purity
    """

    xyz3 = np3d(xyz).copy().astype(np.float)

    # flip axis so that shortest dim is on axis0 (save time in looping):
    if (xyz3.shape[0] < xyz3.shape[1]) & (flip_axes == True):
        axes12flipped = True
        xyz3 = xyz3.transpose((1, 0, 2))
    else:
        axes12flipped = False

    # convert xyz to Yxy:
    Yxy = xyz_to_Yxy(xyz3)
    Yxyw = xyz_to_Yxy(xyzw)

    # get spectrum locus Y,x,y and wavelengths:
    SL = _CMF[cieobs]['bar']
    SL = SL[:, SL[1:].sum(axis=0) >
            0]  # avoid div by zero in xyz-to-Yxy conversion
    wlsl = SL[0]
    Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None]

    # Get maximum wavelength of spectrum locus (before it turns back on itself)
    if SL_max_lambda is None:
        pmaxlambda = Yxysl[..., 1].argmax()  # lambda with largest x value
        dwl = np.diff(
            Yxysl[:, 0,
                  1])  # spectrumlocus in that range should have increasing x
        dwl[wlsl[:-1] < 600] = 10000
        pmaxlambda = np.where(
            dwl <= 0)[0][0]  # Take first element with zero or <zero slope
    else:
        pmaxlambda = np.abs(wlsl - SL_max_lambda).argmin()
    Yxysl = Yxysl[:(pmaxlambda + 1), :]
    wlsl = wlsl[:(pmaxlambda + 1)]

    # center on xyzw:
    Yxy = Yxy - Yxyw
    Yxysl = Yxysl - Yxyw
    Yxyw = Yxyw - Yxyw

    #split:
    Y, x, y = asplit(Yxy)
    Yw, xw, yw = asplit(Yxyw)
    Ysl, xsl, ysl = asplit(Yxysl)

    # calculate hue:
    h = math.positive_arctan(x, y, htype='deg')

    hsl = math.positive_arctan(xsl, ysl, htype='deg')

    hsl_max = hsl[0]  # max hue angle at min wavelength
    hsl_min = hsl[-1]  # min hue angle at max wavelength
    if hsl_min < hsl_max: hsl_min += 360

    dominantwavelength = np.empty(Y.shape)
    purity = np.empty(Y.shape)

    for i in range(xyz3.shape[1]):

        # find index of complementary wavelengths/hues:
        pc = np.where(
            (h[:, i] > hsl_max) & (h[:, i] < hsl_min)
        )  # hue's requiring complementary wavelength (purple line)
        h[:, i][pc] = h[:, i][pc] - np.sign(
            h[:, i][pc] - 180.0
        ) * 180.0  # add/subtract 180° to get positive complementary wavelength

        # find 2 closest enclosing hues in sl:
        #hslb,hib = meshblock(hsl,h[:,i:i+1])
        hib, hslb = np.meshgrid(h[:, i:i + 1], hsl)
        dh = (hslb - hib)
        q1 = np.abs(dh).argmin(axis=0)  # index of closest hue
        sign_q1 = np.sign(dh[q1])[0]
        dh[np.sign(dh) ==
           sign_q1] = 1000000  # set all dh on the same side as q1 to a very large value
        q2 = np.abs(dh).argmin(
            axis=0)  # index of second  closest (enclosing) hue

        # # Test changes to code:
        # print('wls',i, wlsl[q1],wlsl[q2])
        # import matplotlib.pyplot as plt
        # plt.figure()
        # plt.plot(wlsl[:-1],np.diff(xsl[:,0]),'k.-')
        # plt.figure()
        # plt.plot(x[0,i],y[0,i],'k.'); plt.plot(xsl,ysl,'r.-');plt.plot(xsl[q1],ysl[q1],'b.');plt.plot(xsl[q2],ysl[q2],'g.');plt.plot(xsl[-1],ysl[-1],'c+')

        dominantwavelength[:, i] = wlsl[q1] + np.multiply(
            (h[:, i] - hsl[q1, 0]),
            np.divide((wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0]))
        )  # calculate wl corresponding to h: y = y1 + (x-x1)*(y2-y1)/(x2-x1)
        dominantwavelength[:, i][pc] = -dominantwavelength[:, i][
            pc]  #complementary wavelengths are specified by '-' sign

        # calculate excitation purity:
        x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (h[:, i] - hsl[
            q1, 0]) / (hsl[q2, 0] - hsl[q1, 0])  # calculate x of dom. wl
        y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (h[:, i] - hsl[
            q1, 0]) / (hsl[q2, 0] - hsl[q1, 0])  # calculate y of dom. wl
        d_wl = (x_dom_wl**2.0 +
                y_dom_wl**2.0)**0.5  # distance from white point to sl
        d = (x[:, i]**2.0 +
             y[:, i]**2.0)**0.5  # distance from white point to test point
        purity[:, i] = d / d_wl

        # correct for those test points that have a complementary wavelength
        # calculate intersection of line through white point and test point and purple line:
        xy = np.vstack((x[:, i], y[:, i])).T
        xyw = np.hstack((xw, yw))
        xypl1 = np.hstack((xsl[0, None], ysl[0, None]))
        xypl2 = np.hstack((xsl[-1, None], ysl[-1, None]))
        da = (xy - xyw)
        db = (xypl2 - xypl1)
        dp = (xyw - xypl1)
        T = np.array([[0.0, -1.0], [1.0, 0.0]])
        dap = np.dot(da, T)
        denom = np.sum(dap * db, axis=1, keepdims=True)
        num = np.sum(dap * dp, axis=1, keepdims=True)
        xy_linecross = (num / denom) * db + xypl1
        d_linecross = np.atleast_2d(
            (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T  #[0]
        purity[:, i][pc] = d[pc] / d_linecross[pc][:, 0]
    Ydlep = np.dstack((xyz3[:, :, 1], dominantwavelength, purity))

    if axes12flipped == True:
        Ydlep = Ydlep.transpose((1, 0, 2))
    else:
        Ydlep = Ydlep.transpose((0, 1, 2))
    return Ydlep.reshape(xyz.shape)
Exemplo n.º 7
0
def Ydlep_to_xyz(Ydlep,
                 cieobs=_CIEOBS,
                 xyzw=_COLORTF_DEFAULT_WHITE_POINT,
                 flip_axes=False,
                 SL_max_lambda=None,
                 **kwargs):
    """
    Convert Y, dominant (complementary) wavelength and excitation purity to XYZ
    tristimulus values.

    Args:
        :Ydlep: 
            | ndarray with Y, dominant (complementary) wavelength
              and excitation purity
        :xyzw: 
            | None or narray with tristimulus values of a single (!) native white point, optional
            | None defaults to xyz of CIE D65 using the :cieobs: observer.
        :cieobs:
            | luxpy._CIEOBS, optional
            | CMF set to use when calculating spectrum locus coordinates.
        :flip_axes:
            | False, optional
            | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function.
            |          (single xyzw with is not flipped!)
        :SL_max_lambda:
            | None or float, optional
            | Maximum wavelength of spectrum locus before it turns back on itelf in the high wavelength range (~700 nm)

    Returns:
        :xyz: 
            | ndarray with tristimulus values
    """

    Ydlep3 = np3d(Ydlep).copy().astype(np.float)

    # flip axis so that longest dim is on first axis  (save time in looping):
    if (Ydlep3.shape[0] < Ydlep3.shape[1]) & (flip_axes == True):
        axes12flipped = True
        Ydlep3 = Ydlep3.transpose((1, 0, 2))
    else:
        axes12flipped = False

    # convert xyzw to Yxyw:
    Yxyw = xyz_to_Yxy(xyzw)
    Yxywo = Yxyw.copy()

    # get spectrum locus Y,x,y and wavelengths:
    SL = _CMF[cieobs]['bar']
    SL = SL[:, SL[1:].sum(axis=0) >
            0]  # avoid div by zero in xyz-to-Yxy conversion
    wlsl = SL[0, None].T
    Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None]

    # Get maximum wavelength of spectrum locus (before it turns back on itself)
    if SL_max_lambda is None:
        pmaxlambda = Yxysl[..., 1].argmax()  # lambda with largest x value
        dwl = np.diff(
            Yxysl[:, 0,
                  1])  # spectrumlocus in that range should have increasing x
        dwl[wlsl[:-1, 0] < 600] = 10000
        pmaxlambda = np.where(
            dwl <= 0)[0][0]  # Take first element with zero or <zero slope
    else:
        pmaxlambda = np.abs(wlsl - SL_max_lambda).argmin()
    Yxysl = Yxysl[:(pmaxlambda + 1), :]
    wlsl = wlsl[:(pmaxlambda + 1), :1]

    # center on xyzw:
    Yxysl = Yxysl - Yxyw
    Yxyw = Yxyw - Yxyw

    #split:
    Y, dom, pur = asplit(Ydlep3)
    Yw, xw, yw = asplit(Yxyw)
    Ywo, xwo, ywo = asplit(Yxywo)
    Ysl, xsl, ysl = asplit(Yxysl)

    # loop over longest dim:
    x = np.empty(Y.shape)
    y = np.empty(Y.shape)
    for i in range(Ydlep3.shape[1]):

        # find closest wl's to dom:
        #wlslb,wlib = meshblock(wlsl,np.abs(dom[i,:])) #abs because dom<0--> complemtary wl
        wlib, wlslb = np.meshgrid(np.abs(dom[:, i]), wlsl)

        dwl = wlslb - wlib
        q1 = np.abs(dwl).argmin(axis=0)  # index of closest wl
        sign_q1 = np.sign(dwl[q1])
        dwl[np.sign(dwl) ==
            sign_q1] = 1000000  # set all dwl on the same side as q1 to a very large value
        q2 = np.abs(dwl).argmin(
            axis=0)  # index of second closest (enclosing) wl

        # calculate x,y of dom:
        x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (
            np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0]
                                                )  # calculate x of dom. wl
        y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (
            np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0]
                                                )  # calculate y of dom. wl

        # calculate x,y of test:
        d_wl = (x_dom_wl**2.0 +
                y_dom_wl**2.0)**0.5  # distance from white point to dom
        d = pur[:, i] * d_wl
        hdom = math.positive_arctan(x_dom_wl, y_dom_wl, htype='deg')
        x[:, i] = d * np.cos(hdom * np.pi / 180.0)
        y[:, i] = d * np.sin(hdom * np.pi / 180.0)

        # complementary:
        pc = np.where(dom[:, i] < 0.0)
        hdom[pc] = hdom[pc] - np.sign(dom[:, i][pc] -
                                      180.0) * 180.0  # get positive hue angle

        # calculate intersection of line through white point and test point and purple line:
        xy = np.vstack((x_dom_wl, y_dom_wl)).T
        xyw = np.vstack((xw, yw)).T
        xypl1 = np.vstack((xsl[0, None], ysl[0, None])).T
        xypl2 = np.vstack((xsl[-1, None], ysl[-1, None])).T
        da = (xy - xyw)
        db = (xypl2 - xypl1)
        dp = (xyw - xypl1)
        T = np.array([[0.0, -1.0], [1.0, 0.0]])
        dap = np.dot(da, T)
        denom = np.sum(dap * db, axis=1, keepdims=True)
        num = np.sum(dap * dp, axis=1, keepdims=True)
        xy_linecross = (num / denom) * db + xypl1
        d_linecross = np.atleast_2d(
            (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T[:, 0]
        x[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.cos(
            hdom[pc] * np.pi / 180)
        y[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.sin(
            hdom[pc] * np.pi / 180)
    Yxy = np.dstack((Ydlep3[:, :, 0], x + xwo, y + ywo))
    if axes12flipped == True:
        Yxy = Yxy.transpose((1, 0, 2))
    else:
        Yxy = Yxy.transpose((0, 1, 2))
    return Yxy_to_xyz(Yxy).reshape(Ydlep.shape)