def evaluate(self,
                 results,
                 metric='bbox',
                 logger=None,
                 jsonfile_prefix=None,
                 classwise=False,
                 proposal_nums=(100, 300, 1000),
                 iou_thrs=np.arange(0.5, 0.96, 0.05)):
        """Evaluation in LVIS protocol.

        Args:
            results (list[list | tuple]): Testing results of the dataset.
            metric (str | list[str]): Metrics to be evaluated. Options are
                'bbox', 'segm', 'proposal', 'proposal_fast'.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            jsonfile_prefix (str | None):
            classwise (bool): Whether to evaluating the AP for each class.
            proposal_nums (Sequence[int]): Proposal number used for evaluating
                recalls, such as recall@100, recall@1000.
                Default: (100, 300, 1000).
            iou_thrs (Sequence[float]): IoU threshold used for evaluating
                recalls. If set to a list, the average recall of all IoUs will
                also be computed. Default: 0.5.

        Returns:
            dict[str, float]: LVIS style metrics.
        """

        try:
            from lvis import LVISResults, LVISEval
        except ImportError:
            raise ImportError('Please follow config/lvis/README.md to '
                              'install open-mmlab forked lvis first.')
        assert isinstance(results, list), 'results must be a list'
        assert len(results) == len(self), (
            'The length of results is not equal to the dataset len: {} != {}'.
            format(len(results), len(self)))

        metrics = metric if isinstance(metric, list) else [metric]
        allowed_metrics = ['bbox', 'segm', 'proposal', 'proposal_fast']
        for metric in metrics:
            if metric not in allowed_metrics:
                raise KeyError('metric {} is not supported'.format(metric))

        if jsonfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            jsonfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None
        result_files = self.results2json(results, jsonfile_prefix)

        eval_results = {}
        # get original api
        lvis_gt = self.coco
        for metric in metrics:
            msg = 'Evaluating {}...'.format(metric)
            if logger is None:
                msg = '\n' + msg
            print_log(msg, logger=logger)

            if metric == 'proposal_fast':
                ar = self.fast_eval_recall(results,
                                           proposal_nums,
                                           iou_thrs,
                                           logger='silent')
                log_msg = []
                for i, num in enumerate(proposal_nums):
                    eval_results['AR@{}'.format(num)] = ar[i]
                    log_msg.append('\nAR@{}\t{:.4f}'.format(num, ar[i]))
                log_msg = ''.join(log_msg)
                print_log(log_msg, logger=logger)
                continue

            if metric not in result_files:
                raise KeyError('{} is not in results'.format(metric))
            try:
                lvis_dt = LVISResults(lvis_gt, result_files[metric])
            except IndexError:
                print_log('The testing results of the whole dataset is empty.',
                          logger=logger,
                          level=logging.ERROR)
                break

            iou_type = 'bbox' if metric == 'proposal' else metric
            lvis_eval = LVISEval(lvis_gt, lvis_dt, iou_type)
            lvis_eval.params.imgIds = self.img_ids
            if metric == 'proposal':
                lvis_eval.params.useCats = 0
                lvis_eval.params.maxDets = list(proposal_nums)
                lvis_eval.evaluate()
                lvis_eval.accumulate()
                lvis_eval.summarize()
                for k, v in lvis_eval.get_results().items():
                    if k.startswith('AR'):
                        val = float('{:.3f}'.format(float(v)))
                        eval_results[k] = val
            else:
                lvis_eval.evaluate()
                lvis_eval.accumulate()
                lvis_eval.summarize()
                lvis_results = lvis_eval.get_results()
                if classwise:  # Compute per-category AP
                    # Compute per-category AP
                    # from https://github.com/facebookresearch/detectron2/
                    precisions = lvis_eval.eval['precision']
                    # precision: (iou, recall, cls, area range, max dets)
                    assert len(self.cat_ids) == precisions.shape[2]

                    results_per_category = []
                    for idx, catId in enumerate(self.cat_ids):
                        # area range index 0: all area ranges
                        # max dets index -1: typically 100 per image
                        nm = self.coco.load_cats(catId)[0]
                        precision = precisions[:, :, idx, 0, -1]
                        precision = precision[precision > -1]
                        if precision.size:
                            ap = np.mean(precision)
                        else:
                            ap = float('nan')
                        results_per_category.append(
                            (f'{nm["name"]}', f'{float(ap):0.3f}'))

                    num_columns = min(6, len(results_per_category) * 2)
                    results_flatten = list(
                        itertools.chain(*results_per_category))
                    headers = ['category', 'AP'] * (num_columns // 2)
                    results_2d = itertools.zip_longest(*[
                        results_flatten[i::num_columns]
                        for i in range(num_columns)
                    ])
                    table_data = [headers]
                    table_data += [result for result in results_2d]
                    table = AsciiTable(table_data)
                    print_log('\n' + table.table, logger=logger)

                for k, v in lvis_results.items():
                    if k.startswith('AP'):
                        key = '{}_{}'.format(metric, k)
                        val = float('{:.3f}'.format(float(v)))
                        eval_results[key] = val
                ap_summary = ' '.join([
                    '{}:{:.3f}'.format(k, float(v))
                    for k, v in lvis_results.items() if k.startswith('AP')
                ])
                eval_results['{}_mAP_copypaste'.format(metric)] = ap_summary
            lvis_eval.print_results()
        if tmp_dir is not None:
            tmp_dir.cleanup()
        return eval_results
Exemplo n.º 2
0
def main():
    # Use first line of file docstring as description if it exists.
    parser = argparse.ArgumentParser(
        description=__doc__.split("\n")[0] if __doc__ else "",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )
    parser.add_argument("annotations_json", type=Path)
    parser.add_argument("results_json", type=Path)
    parser.add_argument("output_dir", type=Path)
    parser.add_argument("--type", default="segm", choices=["segm", "bbox"])
    parser.add_argument("--dets-per-cat", default=-1, type=int)
    parser.add_argument("--max-dets", default=-1, type=int)
    parser.add_argument("--ious", nargs="*", type=float)
    # NOTE: We default to only using areas=all, since we don't report S/M/L APs here.
    parser.add_argument(
        "--areas",
        nargs="*",
        type=str,
        choices=["all", "small", "medium", "large"],
        default=["all"],
    )
    parser.add_argument(
        "--pools",
        nargs="*",
        choices=["all", "r", "c", "f"],
        default=["all", "r", "c", "f"],
    )

    args = parser.parse_args()
    args.output_dir.mkdir(exist_ok=True, parents=True)
    logger = setup_logger(output=str(args.output_dir.resolve()), name=__file__)
    log_path = args.output_dir / "log.txt"

    results = str(args.results_json)
    if args.dets_per_cat > 0:
        with open(args.results_json, "r") as f:
            results = json.load(f)

        by_cat = defaultdict(list)
        for ann in results:
            by_cat[ann["category_id"]].append(ann)
        results = []
        topk = args.dets_per_cat
        for cat_anns in by_cat.values():
            results.extend(
                sorted(cat_anns, key=lambda x: x["score"],
                       reverse=True)[:topk])

    gt = LVIS(args.annotations_json)
    results = LVISResults(gt, results, max_dets=args.max_dets)
    lvis_eval = LVISPooledEval(gt,
                               results,
                               iou_type=args.type,
                               pools=args.pools)
    params = lvis_eval.params
    params.max_dets = args.max_dets
    if args.ious:
        params.iou_thrs = args.ious
    if args.areas:
        indices = [
            i for i, area in enumerate(params.area_rng_lbl)
            if area in args.areas
        ]
        params.area_rng_lbl = [params.area_rng_lbl[i] for i in indices]
        params.area_rng = [params.area_rng[i] for i in indices]

    lvis_eval.run()
    lvis_eval.print_results()
    metrics = {
        k: v
        for k, v in lvis_eval.results.items() if k.startswith("AP")
    }
    logger.info("copypaste: %s,%s", ",".join(map(str, metrics.keys())), "path")
    logger.info(
        "copypaste: %s,%s",
        ",".join(f"{v*100:.2f}" for v in metrics.values()),
        log_path,
    )
Exemplo n.º 3
0
 def reload_annotations(self):
     self.lvis = LVIS('/scratch/users/zzweng/datasets/lvis/lvis_v0.5_val.json')
     self.dt_path = 'output/inference/lvis_instances_results.json'
     self.lvis_dt = LVISResults(self.lvis, self.dt_path)
Exemplo n.º 4
0
    def evaluate(self,
                 results,
                 metric=['track'],
                 logger=None,
                 resfile_path=None):
        if isinstance(metric, list):
            metrics = metric
        elif isinstance(metric, str):
            metrics = [metric]
        else:
            raise TypeError('metric must be a list or a str.')
        allowed_metrics = ['bbox', 'track']
        for metric in metrics:
            if metric not in allowed_metrics:
                raise KeyError(f'metric {metric} is not supported.')

        result_files, tmp_dir = self.format_results(results, resfile_path)

        eval_results = dict()

        if 'track' in metrics:
            from tao.toolkit.tao import TaoEval
            print_log('Evaluating TAO results...', logger)
            tao_eval = TaoEval(self.ann_file, result_files['track'])
            tao_eval.params.img_ids = self.img_ids
            tao_eval.params.cat_ids = self.cat_ids
            tao_eval.params.iou_thrs = np.array([0.5, 0.75])
            tao_eval.run()

            tao_eval.print_results()
            tao_results = tao_eval.get_results()
            for k, v in tao_results.items():
                if isinstance(k, str) and k.startswith('AP'):
                    key = 'track_{}'.format(k)
                    val = float('{:.3f}'.format(float(v)))
                    eval_results[key] = val

        if 'bbox' in metrics:
            try:
                import lvis
                assert lvis.__version__ >= '10.5.3'
                from lvis import LVIS, LVISResults, LVISEval
            except AssertionError:
                raise AssertionError(
                    'Incompatible version of lvis is installed. '
                    'Run pip uninstall lvis first. Then run pip '
                    'install mmlvis to install open-mmlab forked '
                    'lvis. ')
            except ImportError:
                raise ImportError(
                    'Package lvis is not installed. Please run pip '
                    'install mmlvis to install open-mmlab forked '
                    'lvis.')
            print_log('Evaluating detection results...', logger)
            lvis_gt = LVIS(self.ann_file)
            lvis_dt = LVISResults(lvis_gt, result_files['bbox'])
            lvis_eval = LVISEval(lvis_gt, lvis_dt, 'bbox')
            lvis_eval.params.imgIds = self.img_ids
            lvis_eval.params.catIds = self.cat_ids
            lvis_eval.evaluate()
            lvis_eval.accumulate()
            lvis_eval.summarize()
            lvis_eval.print_results()
            lvis_results = lvis_eval.get_results()
            for k, v in lvis_results.items():
                if k.startswith('AP'):
                    key = '{}_{}'.format('bbox', k)
                    val = float('{:.3f}'.format(float(v)))
                    eval_results[key] = val
            ap_summary = ' '.join([
                '{}:{:.3f}'.format(k, float(v))
                for k, v in lvis_results.items() if k.startswith('AP')
            ])
            eval_results['bbox_mAP_copypaste'] = ap_summary

        if tmp_dir is not None:
            tmp_dir.cleanup()

        return eval_results
def _evaluate_predictions_on_lvis_per_class(lvis_gt,
                                            lvis_results,
                                            iou_type,
                                            class_names=None):
    """
        Args:
            iou_type (str):
            kpt_oks_sigmas (list[float]):
            class_names (None or list[str]): if provided, will use it to predict
                per-category AP.

        Returns:
            a dict of {metric name: score}
        """
    metrics = {
        "bbox":
        ["AP", "AP50", "AP75", "APs", "APm", "APl", "APr", "APc", "APf"],
        "segm":
        ["AP", "AP50", "AP75", "APs", "APm", "APl", "APr", "APc", "APf"],
    }[iou_type]

    logger = logging.getLogger(__name__)

    if len(lvis_results) == 0:  # TODO: check if needed
        logger.warn("No predictions from the model! Set scores to -1")
        return {metric: -1 for metric in metrics}

    if iou_type == "segm":
        lvis_results = copy.deepcopy(lvis_results)
        # When evaluating mask AP, if the results contain bbox, LVIS API will
        # use the box area as the area of the instance, instead of the mask area.
        # This leads to a different definition of small/medium/large.
        # We remove the bbox field to let mask AP use mask area.
        for c in lvis_results:
            c.pop("bbox", None)

    from lvis import LVISEval, LVISResults

    lvis_results = LVISResults(lvis_gt, lvis_results)
    lvis_eval = LVISEval(lvis_gt, lvis_results, iou_type)

    lvis_eval.evaluate()
    lvis_eval.accumulate()
    precisions = lvis_eval.eval["precision"]

    results_per_category = []
    for idx, name in enumerate(class_names):
        # area range index 0: all area ranges
        # max dets index -1: typically 100 per image
        precision = precisions[:, :, idx, 0]
        precision = precision[precision > -1]
        ap = np.mean(precision) if precision.size else float("nan")
        results_per_category.append(("{}".format(name), float(ap * 100)))

    lvis_eval.summarize()
    lvis_eval.print_results()

    # Pull the standard metrics from the LVIS results
    results = lvis_eval.get_results()
    results = {metric: float(results[metric] * 100) for metric in metrics}
    logger.info("Evaluation results for {}: \n".format(iou_type) +
                create_small_table(results))
    results.update({"AP-" + name: ap for name, ap in results_per_category})
    return results
def main():
    # Use first line of file docstring as description if it exists.
    parser = argparse.ArgumentParser(
        description=__doc__.split("\n")[0] if __doc__ else "",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
    )
    parser.add_argument("annotations_json", type=Path)
    parser.add_argument("results_json", type=Path)
    parser.add_argument("output_dir", type=Path)
    parser.add_argument("--type", default="segm", choices=["segm", "bbox"])
    parser.add_argument("--dets-per-cat", default=10000, type=int)
    parser.add_argument("--ious", nargs="*", type=float)

    args = parser.parse_args()
    args.output_dir.mkdir(exist_ok=True, parents=True)
    logger = setup_logger(output=str(args.output_dir.resolve()), name=__file__)
    log_path = args.output_dir / "log.txt"

    assert args.dets_per_cat > 0
    with open(args.results_json, "r") as f:
        results = json.load(f)

    by_cat = defaultdict(list)
    for ann in results:
        by_cat[ann["category_id"]].append(ann)
    results = []
    topk = args.dets_per_cat
    missing_dets_cats = set()
    for cat, cat_anns in by_cat.items():
        if len(cat_anns) < topk:
            missing_dets_cats.add(cat)
        results.extend(
            sorted(cat_anns, key=lambda x: x["score"], reverse=True)[:topk])
    if missing_dets_cats:
        logger.warning(
            f"\n===\n"
            f"{len(missing_dets_cats)} classes had less than {topk} detections!\n"
            f"Outputting {topk} detections for each class will improve AP further.\n"
            f"If using detectron2, please use the lvdevil/infer_topk.py script to "
            f"output a results file with {topk} detections for each class.\n"
            f"===")

    gt = LVIS(args.annotations_json)
    results = LVISResults(gt, results, max_dets=-1)
    lvis_eval = LVISEval(gt, results, iou_type=args.type)
    params = lvis_eval.params
    params.max_dets = -1  # No limit on detections per image.
    if args.ious:
        params.iou_thrs = args.ious

    lvis_eval.run()
    lvis_eval.print_results()
    metrics = {
        k: v
        for k, v in lvis_eval.results.items() if k.startswith("AP")
    }
    logger.info("copypaste: %s,%s", ",".join(map(str, metrics.keys())), "path")
    logger.info(
        "copypaste: %s,%s",
        ",".join(f"{v*100:.2f}" for v in metrics.values()),
        log_path,
    )
Exemplo n.º 7
0
    def eval_cocofied_lvis_result(self, gt_file, result_file, metric='segm'):

        def get_lvis_format_result(lvis_params, lvis_results):
            template = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} catIds={:>3s}] = {:0.3f}"

            result_list = []
            for key, value in lvis_results.items():
                max_dets = lvis_params.max_dets
                if "AP" in key:
                    title = "Average Precision"
                    _type = "(AP)"
                else:
                    title = "Average Recall"
                    _type = "(AR)"

                if len(key) > 2 and key[2].isdigit():
                    iou_thr = (float(key[2:]) / 100)
                    iou = "{:0.2f}".format(iou_thr)
                else:
                    iou = "{:0.2f}:{:0.2f}".format(
                        lvis_params.iou_thrs[0], lvis_params.iou_thrs[-1]
                    )

                if len(key) > 2 and key[2] in ["r", "c", "f"]:
                    cat_group_name = key[2]
                else:
                    cat_group_name = "all"

                if len(key) > 2 and key[2] in ["s", "m", "l"]:
                    area_rng = key[2]
                else:
                    area_rng = "all"

                result_list.append(template.format(title, _type, iou, area_rng, max_dets, cat_group_name, value))
            return result_list

        print('load gt json')
        lvis_gt = LVIS(gt_file)
        cat_ids = lvis_gt.get_cat_ids()

        print('load pred json')
        lvis_dt = LVISResults(lvis_gt, result_file)

        print('evaluating')
        lvis_eval = LVISEval(lvis_gt, lvis_dt, metric)
        lvis_eval.params.imgIds = lvis_gt.get_img_ids()

        lvis_eval.evaluate()
        lvis_eval.accumulate()
        lvis_eval.summarize()

        # Compute per-category AP
        precisions = lvis_eval.eval['precision']
        assert len(cat_ids) == precisions.shape[2]

        results_per_category = []
        for idx, catId in enumerate(cat_ids):
            nm = lvis_gt.load_cats([catId])[0]
            precision = precisions[:, :, idx, 0]
            precision = precision[precision > -1]
            if precision.size:
                ap = np.mean(precision)
            else:
                ap = float('nan')
            results_per_category.append(
                (f'{nm["name"]}', f'{float(ap):0.3f}'))

        num_columns = min(6, len(results_per_category) * 2)
        results_flatten = list(
            itertools.chain(*results_per_category))
        headers = ['category', 'AP'] * (num_columns // 2)
        results_2d = itertools.zip_longest(*[
            results_flatten[i::num_columns]
            for i in range(num_columns)
        ])
        table_data = [headers]
        table_data += [result for result in results_2d]
        table = AsciiTable(table_data)
        print_log('\n' + table.table)

        format_summary_result_list = get_lvis_format_result(lvis_eval.params, lvis_eval.results)
        format_summary_result = "\n".join(format_summary_result_list)

        with open(f"cocofied_per-category-ap-{metric}.txt", 'w') as f:
            f.write(table.table + "\n" + format_summary_result)

        lvis_eval.print_results()