Exemplo n.º 1
0
 def build_model(self, inputs, outputs):
     """
     build_model.
     Args:
         inputs: tensor, input of model
         outputs: tensor, output of model
     Returns:
         None
     """
     embed_char = outputs[0]
     embed_word = outputs[1]
     if self.wclstm_embed_type == "ATTNENTION":
         x_word = L.TimeDistributed(
             SelfAttention(K.int_shape(embed_word)[-1]))(embed_word)
         x_word_shape = K.int_shape(x_word)
         x_word = L.Reshape(target_shape=(x_word_shape[:2],
                                          x_word_shape[2] *
                                          x_word_shape[3]))
         x_word = L.Dense(self.embed_size,
                          activation=self.activate_mid)(x_word)
     # elif self.wclstm_embed_type == "SHORT":
     else:
         x_word = L.Lambda(lambda x: x[:, :, 0, :])(embed_word)
     outputs_concat = L.Concatenate(axis=-1)([embed_char, x_word])
     # LSTM or GRU
     if self.rnn_type == "LSTM":
         rnn_cell = L.LSTM
     elif self.rnn_type == "CuDNNLSTM":
         rnn_cell = L.CuDNNLSTM
     elif self.rnn_type == "CuDNNGRU":
         rnn_cell = L.CuDNNGRU
     else:
         rnn_cell = L.GRU
     # Bi-LSTM-CRF
     for nrl in range(self.num_rnn_layers):
         x = L.Bidirectional(
             rnn_cell(
                 units=self.rnn_unit * (nrl + 1),
                 return_sequences=True,
                 activation=self.activate_mid,
             ))(outputs_concat)
         outputs = L.Dropout(self.dropout)(x)
     if self.use_crf:
         x = L.Dense(units=self.label,
                     activation=self.activate_end)(outputs)
         self.CRF = ConditionalRandomField(self.crf_lr_multiplier,
                                           name="crf_bert4keras")
         self.outputs = self.CRF(x)
         self.trans = K.eval(self.CRF.trans).tolist()
         self.loss = self.CRF.dense_loss if self.use_onehot else self.CRF.sparse_loss
         self.metrics = [
             self.CRF.dense_accuracy
             if self.use_onehot else self.CRF.sparse_accuracy
         ]
     else:
         self.outputs = L.TimeDistributed(
             L.Dense(units=self.label,
                     activation=self.activate_end))(outputs)
     self.model = M.Model(inputs, self.outputs)
     self.model.summary(132)
Exemplo n.º 2
0
 def build_model(self, inputs, outputs):
     """
     build_model.
     Args:
         inputs: tensor, input of model
         outputs: tensor, output of model
     Returns:
         None
     """
     # CuDNNGRU or GRU
     x = None
     if self.rnn_type.upper() == "CUDNNGRU":
         rnn_cell = L.CuDNNGRU
     else:
         rnn_cell = L.GRU
     # Bi-GRU
     for nrl in range(self.num_rnn_layers):
         x = L.Bidirectional(
             rnn_cell(
                 units=self.rnn_unit,
                 return_sequences=True,
                 activation=self.activate_mid,
             ))(outputs)
         x = L.Dropout(self.dropout)(x)
     if self.use_crf:
         x = L.Dense(units=self.label, activation=self.activate_end)(x)
         self.CRF = ConditionalRandomField(self.crf_lr_multiplier,
                                           name="crf_bert4keras")
         self.outputs = self.CRF(x)
         self.trans = K.eval(self.CRF.trans).tolist()
         self.loss = self.CRF.dense_loss if self.use_onehot else self.CRF.sparse_loss
         self.metrics = [
             self.CRF.dense_accuracy
             if self.use_onehot else self.CRF.sparse_accuracy
         ]
     else:
         self.outputs = L.TimeDistributed(
             L.Dense(units=self.label, activation=self.activate_end))(x)
     self.model = M.Model(inputs, self.outputs)
     self.model.summary(132)
Exemplo n.º 3
0
 def build_model(self, inputs, outputs):
     """
     build_model.
     Args:
         inputs: tensor, input of model
         outputs: tensor, output of model
     Returns:
         None
     """
     # LSTM or GRU
     if self.rnn_type == "LSTM":
         rnn_cell = L.LSTM
     elif self.rnn_type == "CuDNNLSTM":
         rnn_cell = L.CuDNNLSTM
     elif self.rnn_type == "CuDNNGRU":
         rnn_cell = L.CuDNNGRU
     else:
         rnn_cell = L.GRU
     # Bi-LSTM-LAN
     for nrl in range(self.num_rnn_layers):
         x = L.Bidirectional(rnn_cell(units=self.rnn_unit*(nrl+1),
                                      return_sequences=True,
                                      activation=self.activate_mid,
                                      ))(outputs)
         x_att = SelfAttention(K.int_shape(x)[-1])(x)
         outputs = L.Concatenate()([x, x_att])
         outputs = L.Dropout(self.dropout)(outputs)
     if self.use_crf:
         x = L.Dense(units=self.label, activation=self.activate_end)(outputs)
         self.CRF = ConditionalRandomField(self.crf_lr_multiplier, name="crf_bert4keras")
         self.outputs = self.CRF(x)
         self.trans = K.eval(self.CRF.trans).tolist()
         self.loss = self.CRF.dense_loss if self.use_onehot else self.CRF.sparse_loss
         self.metrics = [self.CRF.dense_accuracy if self.use_onehot else self.CRF.sparse_accuracy]
     else:
         self.outputs = L.TimeDistributed(L.Dense(units=self.label, activation=self.activate_end))(outputs)
     self.model = M.Model(inputs, self.outputs)
     self.model.summary(132)
Exemplo n.º 4
0
 def build_model(self, inputs, outputs):
     """
     build_model.
     Args:
         inputs: tensor, input of model
         outputs: tensor, output of model
     Returns:
         None
     """
     # LSTM or GRU
     if self.rnn_type == "LSTM":
         rnn_cell = L.LSTM
     elif self.rnn_type == "CuDNNLSTM":
         rnn_cell = L.CuDNNLSTM
     elif self.rnn_type == "CuDNNGRU":
         rnn_cell = L.CuDNNGRU
     else:
         rnn_cell = L.GRU
     # CNN-LSTM, 提取n-gram特征和最大池化, 一般不用平均池化
     conv_pools = []
     for i in range(len(self.filters_size)):
         conv = L.Conv1D(
             name="conv-{0}-{1}".format(i, self.filters_size[i]),
             kernel_size=self.filters_size[i],
             activation=self.activate_mid,
             filters=self.filters_num,
             padding='same',
         )(outputs)
         conv_rnn = L.Bidirectional(
             rnn_cell(
                 name="bi-lstm-{0}-{1}".format(i, self.filters_size[i]),
                 activation=self.activate_mid,
                 return_sequences=True,
                 units=self.rnn_unit,
             ))(conv)
         x_dropout = L.Dropout(rate=self.dropout,
                               name="dropout-{0}-{1}".format(
                                   i, self.filters_size[i]))(conv_rnn)
         conv_pools.append(x_dropout)
     # 拼接
     x = L.Concatenate(axis=-1)(conv_pools)
     x = L.Dropout(self.dropout)(x)
     # CRF or Dense
     if self.use_crf:
         x = L.Dense(units=self.label, activation=self.activate_end)(x)
         self.CRF = ConditionalRandomField(self.crf_lr_multiplier,
                                           name="crf_bert4keras")
         self.outputs = self.CRF(x)
         self.trans = K.eval(self.CRF.trans).tolist()
         self.loss = self.CRF.dense_loss if self.use_onehot else self.CRF.sparse_loss
         self.metrics = [
             self.CRF.dense_accuracy
             if self.use_onehot else self.CRF.sparse_accuracy
         ]
     else:
         self.outputs = L.TimeDistributed(
             L.Dense(units=self.label,
                     activation=self.activate_end,
                     name="dense-output"))(x)
     self.model = M.Model(inputs, self.outputs)
     self.model.summary(132)
Exemplo n.º 5
0
 def build_model(self, inputs, outputs):
     """
     build_model.
     Args:
         inputs: tensor, input of model
         outputs: tensor, output of model
     Returns:
         None
     """
     # CNN, 提取n-gram特征和最大池化, DGCNN膨胀卷积(IDCNN)
     conv_pools = []
     for i in range(len(self.filters_size)):
         conv = L.Conv1D(
             name="conv-{0}-{1}".format(i, self.filters_size[i]),
             dilation_rate=self.atrous_rates[0],
             kernel_size=self.filters_size[i],
             activation=self.activate_mid,
             filters=self.filters_num,
             padding="SAME",
         )(outputs)
         for j in range(len(self.atrous_rates) - 1):
             conv = L.Conv1D(
                 name="conv-{0}-{1}-{2}".format(i, self.filters_size[i], j),
                 dilation_rate=self.atrous_rates[j],
                 kernel_size=self.filters_size[i],
                 activation=self.activate_mid,
                 filters=self.filters_num,
                 padding="SAME",
             )(conv)
             conv = L.Dropout(
                 name="dropout-{0}-{1}-{2}".format(i, self.filters_size[i],
                                                   j),
                 rate=self.dropout,
             )(conv)
         conv_pools.append(conv)
     # 拼接
     x = L.Concatenate(axis=-1)(conv_pools)
     x = L.Dropout(self.dropout)(x)
     # CRF or Dense
     if self.use_crf:
         x = L.Dense(units=self.label, activation=self.activate_end)(x)
         self.CRF = ConditionalRandomField(self.crf_lr_multiplier,
                                           name="crf_bert4keras")
         self.outputs = self.CRF(x)
         self.trans = K.eval(self.CRF.trans).tolist()
         self.loss = self.CRF.dense_loss if self.use_onehot else self.CRF.sparse_loss
         self.metrics = [
             self.CRF.dense_accuracy
             if self.use_onehot else self.CRF.sparse_accuracy
         ]
     else:
         x = L.Bidirectional(
             L.GRU(
                 activation=self.activate_mid,
                 return_sequences=True,
                 units=self.rnn_unit,
                 name="bi-gru",
             ))(x)
         self.outputs = L.TimeDistributed(
             L.Dense(
                 activation=self.activate_end,
                 name="dense-output",
                 units=self.label,
             ))(x)
     self.model = M.Model(inputs, self.outputs)
     self.model.summary(132)