Exemplo n.º 1
0
    def process(self, activations, **kwargs):
        """
        Detect the tempi from the (beat) activations.

        Parameters
        ----------
        activations : numpy array
            Beat activation function.

        Returns
        -------
        tempi : numpy array
            Array with the dominant tempi [bpm] (first column) and their
            relative strengths (second column).

        """
        # smooth the activations
        act_smooth = int(round(self.fps * self.act_smooth))
        activations = smooth_signal(activations, act_smooth)
        # generate a histogram of beat intervals
        histogram = self.interval_histogram(activations.astype(np.float))
        # smooth the histogram
        histogram = smooth_histogram(histogram, self.hist_smooth)
        # detect the tempi and return them
        return detect_tempo(histogram, self.fps)
Exemplo n.º 2
0
def smooth_histogram(histogram, smooth):
    """
    Smooth the given histogram.

    Parameters
    ----------
    histogram : tuple
        Histogram (tuple of 2 numpy arrays, the first giving the strengths of
        the bins and the second corresponding delay values).
    smooth : int or numpy array
        Smoothing kernel (size).

    Returns
    -------
    histogram_bins : numpy array
        Bins of the smoothed histogram.
    histogram_delays : numpy array
        Corresponding delays.

    Notes
    -----
    If `smooth` is an integer, a Hamming window of that length will be used as
    a smoothing kernel.

    """
    # smooth only the histogram bins, not the corresponding delays
    return smooth_signal(histogram[0], smooth), histogram[1]
Exemplo n.º 3
0
Arquivo: beats.py Projeto: EQ4/madmom
    def process(self, activations):
        """
        Detect the beats in the given activation function.

        :param activations: beat activation function
        :return:            detected beat positions [seconds]

        """
        # smooth activations
        act_smooth = int(self.fps * self.tempo_estimator.act_smooth)
        activations = smooth_signal(activations, act_smooth)
        # TODO: refactor interval stuff to use TempoEstimation
        # if look_ahead is not defined, assume a global tempo
        if self.look_ahead is None:
            # create a interval histogram
            histogram = self.tempo_estimator.interval_histogram(activations)
            # get the dominant interval
            interval = self.tempo_estimator.dominant_interval(histogram)
            # detect beats based on this interval
            detections = detect_beats(activations, interval, self.look_aside)
        else:
            # allow varying tempo
            look_ahead_frames = int(self.look_ahead * self.fps)
            # detect the beats
            detections = []
            pos = 0
            # TODO: make this _much_ faster!
            while pos < len(activations):
                # look N frames around the actual position
                start = pos - look_ahead_frames
                end = pos + look_ahead_frames
                if start < 0:
                    # pad with zeros
                    act = np.append(np.zeros(-start), activations[0:end])
                elif end > len(activations):
                    # append zeros accordingly
                    zeros = np.zeros(end - len(activations))
                    act = np.append(activations[start:], zeros)
                else:
                    act = activations[start:end]
                # create a interval histogram
                histogram = self.tempo_estimator.interval_histogram(act)
                # get the dominant interval
                interval = self.tempo_estimator.dominant_interval(histogram)
                # add the offset (i.e. the new detected start position)
                positions = detect_beats(act, interval, self.look_aside)
                # correct the beat positions
                positions += start
                # search the closest beat to the predicted beat position
                pos = positions[(np.abs(positions - pos)).argmin()]
                # append to the beats
                detections.append(pos)
                pos += interval

        # convert detected beats to a list of timestamps
        detections = np.array(detections) / float(self.fps)
        # remove beats with negative times and return them
        return detections[np.searchsorted(detections, 0):]
Exemplo n.º 4
0
Arquivo: tempo.py Projeto: EQ4/madmom
def smooth_histogram(histogram, smooth):
    """
    Smooth the given histogram.

    :param histogram: histogram
    :param smooth:    smoothing kernel [numpy array or int]
    :return:          smoothed histogram

    Note: If 'smooth' is an integer, a Hamming window of that length will be
          used as a smoothing kernel.

    """
    # smooth only the the histogram bins, not the corresponding delays
    return smooth_signal(histogram[0], smooth), histogram[1]
Exemplo n.º 5
0
Arquivo: beats.py Projeto: EQ4/madmom
    def process(self, activations):
        """
        Detect the beats in the given activation function.

        :param activations: beat activation function
        :return:            detected beat positions [seconds]

        """
        import itertools as it
        # estimate the tempo
        tempi = self.tempo_estimator.process(activations)
        intervals = self.fps * 60. / tempi[:, 0]

        # compute possible intervals
        if self.use_factors:
            # use the dominant interval with different factors
            possible_intervals = [int(intervals[0] * f) for f in self.factors]
            possible_intervals = [i for i in possible_intervals if
                                  self.tempo_estimator.max_interval >= i >=
                                  self.tempo_estimator.min_interval]
        else:
            # take the top n intervals from the tempo estimator
            possible_intervals = intervals[:self.num_intervals]

        # sort and start from the greatest interval
        possible_intervals.sort()
        possible_intervals = [int(i) for i in possible_intervals[::-1]]

        # smooth activations
        act_smooth = int(self.fps * self.tempo_estimator.act_smooth)
        activations = smooth_signal(activations, act_smooth)

        # since the cython code uses memory views, we need to make sure that
        # the activations are C-contiguous and of C-type float (np.float32)
        contiguous_act = np.ascontiguousarray(activations, dtype=np.float32)
        results = self.map(_process_crf,
                           it.izip(it.repeat(contiguous_act),
                                   possible_intervals,
                                   it.repeat(self.interval_sigma)))

        # normalize their probabilities
        normalized_seq_probabilities = np.array([r[1] / r[0].shape[0]
                                                 for r in results])
        # pick the best one
        best_seq = results[normalized_seq_probabilities.argmax()][0]

        # convert the detected beat positions to seconds and return them
        return best_seq.astype(np.float) / self.fps
Exemplo n.º 6
0
Arquivo: tempo.py Projeto: EQ4/madmom
    def process(self, activations):
        """
        Detect the tempi from the beat activations.

        :param activations: RNN beat activation function
        :return:            numpy array with the dominant tempi (first column)
                            and their relative strengths (second column)

        """
        # smooth the activations
        act_smooth = int(round(self.fps * self.act_smooth))
        activations = smooth_signal(activations, act_smooth)
        # generate a histogram of beat intervals
        histogram = self.interval_histogram(activations.astype(np.float))
        # smooth the histogram
        histogram = smooth_histogram(histogram, self.hist_smooth)
        # detect the tempi and return them
        return detect_tempo(histogram, self.fps)
Exemplo n.º 7
0
def peak_picking(activations,
                 threshold,
                 smooth=None,
                 pre_avg=0,
                 post_avg=0,
                 pre_max=1,
                 post_max=1):
    """
    Perform thresholding and peak-picking on the given activation function.

    Parameters
    ----------
    activations : numpy array
        Activation function.
    threshold : float
        Threshold for peak-picking
    smooth : int or numpy array
        Smooth the activation function with the kernel (size).
    pre_avg : int, optional
        Use `pre_avg` frames past information for moving average.
    post_avg : int, optional
        Use `post_avg` frames future information for moving average.
    pre_max : int, optional
        Use `pre_max` frames past information for moving maximum.
    post_max : int, optional
        Use `post_max` frames future information for moving maximum.

    Returns
    -------
    peak_idx : numpy array
        Indices of the detected peaks.

    See Also
    --------
    :func:`smooth`

    Notes
    -----
    If no moving average is needed (e.g. the activations are independent of
    the signal's level as for neural network activations), set `pre_avg` and
    `post_avg` to 0.
    For peak picking of local maxima, set `pre_max` and  `post_max` to 1.
    For online peak picking, set all `post_` parameters to 0.

    References
    ----------
    .. [1] Sebastian Böck, Florian Krebs and Markus Schedl,
           "Evaluating the Online Capabilities of Onset Detection Methods",
           Proceedings of the 13th International Society for Music Information
           Retrieval Conference (ISMIR), 2012.

    """
    # smooth activations
    if smooth not in (None, 0):
        activations = smooth_signal(activations, smooth)
    # compute a moving average
    avg_length = pre_avg + post_avg + 1
    if avg_length > 1:
        # TODO: make the averaging function exchangeable (mean/median/etc.)
        avg_origin = int(np.floor((pre_avg - post_avg) / 2))
        if activations.ndim == 1:
            filter_size = avg_length
        elif activations.ndim == 2:
            filter_size = [avg_length, 1]
        else:
            raise ValueError('`activations` must be either 1D or 2D')
        mov_avg = uniform_filter(activations,
                                 filter_size,
                                 mode='constant',
                                 origin=avg_origin)
    else:
        # do not use a moving average
        mov_avg = 0
    # detections are those activations above the moving average + the threshold
    detections = activations * (activations >= mov_avg + threshold)
    # peak-picking
    max_length = pre_max + post_max + 1
    if max_length > 1:
        # compute a moving maximum
        max_origin = int(np.floor((pre_max - post_max) / 2))
        if activations.ndim == 1:
            filter_size = max_length
        elif activations.ndim == 2:
            filter_size = [max_length, 1]
        else:
            raise ValueError('`activations` must be either 1D or 2D')
        mov_max = maximum_filter(detections,
                                 filter_size,
                                 mode='constant',
                                 origin=max_origin)
        # detections are peak positions
        detections *= (detections == mov_max)
    # return indices
    if activations.ndim == 1:
        return np.nonzero(detections)[0]
    elif activations.ndim == 2:
        return np.nonzero(detections)
    else:
        raise ValueError('`activations` must be either 1D or 2D')
Exemplo n.º 8
0
def peak_picking(activations, threshold, smooth=None, pre_avg=0, post_avg=0,
                 pre_max=1, post_max=1):
    """
    Perform thresholding and peak-picking on the given activation function.

    Parameters
    ----------
    activations : numpy array
        Activation function.
    threshold : float
        Threshold for peak-picking
    smooth : int or numpy array
        Smooth the activation function with the kernel (size).
    pre_avg : int, optional
        Use `pre_avg` frames past information for moving average.
    post_avg : int, optional
        Use `post_avg` frames future information for moving average.
    pre_max : int, optional
        Use `pre_max` frames past information for moving maximum.
    post_max : int, optional
        Use `post_max` frames future information for moving maximum.

    Returns
    -------
    peak_idx : numpy array
        Indices of the detected peaks.

    See Also
    --------
    :func:`smooth`

    Notes
    -----
    If no moving average is needed (e.g. the activations are independent of
    the signal's level as for neural network activations), set `pre_avg` and
    `post_avg` to 0.
    For peak picking of local maxima, set `pre_max` and  `post_max` to 1.
    For online peak picking, set all `post_` parameters to 0.

    References
    ----------
    .. [1] Sebastian Böck, Florian Krebs and Markus Schedl,
           "Evaluating the Online Capabilities of Onset Detection Methods",
           Proceedings of the 13th International Society for Music Information
           Retrieval Conference (ISMIR), 2012.

    """
    # smooth activations
    if smooth not in (None, 0):
        activations = smooth_signal(activations, smooth)
    # compute a moving average
    avg_length = pre_avg + post_avg + 1
    if avg_length > 1:
        # TODO: make the averaging function exchangeable (mean/median/etc.)
        avg_origin = int(np.floor((pre_avg - post_avg) / 2))
        if activations.ndim == 1:
            filter_size = avg_length
        elif activations.ndim == 2:
            filter_size = [avg_length, 1]
        else:
            raise ValueError('`activations` must be either 1D or 2D')
        mov_avg = uniform_filter(activations, filter_size, mode='constant',
                                 origin=avg_origin)
    else:
        # do not use a moving average
        mov_avg = 0
    # detections are those activations above the moving average + the threshold
    detections = activations * (activations >= mov_avg + threshold)
    # peak-picking
    max_length = pre_max + post_max + 1
    if max_length > 1:
        # compute a moving maximum
        max_origin = int(np.floor((pre_max - post_max) / 2))
        if activations.ndim == 1:
            filter_size = max_length
        elif activations.ndim == 2:
            filter_size = [max_length, 1]
        else:
            raise ValueError('`activations` must be either 1D or 2D')
        mov_max = maximum_filter(detections, filter_size, mode='constant',
                                 origin=max_origin)
        # detections are peak positions
        detections *= (detections == mov_max)
    # return indices
    if activations.ndim == 1:
        return np.nonzero(detections)[0]
    elif activations.ndim == 2:
        return np.nonzero(detections)
    else:
        raise ValueError('`activations` must be either 1D or 2D')