Exemplo n.º 1
0
def load_dataset(config_name, exp_uid):
  """Load a dataset from a config's name.

  The loaded dataset consists of:
    - original data (dataset_blob, train_data, train_label),
    - encoded data from a pretrained model (train_mu, train_sigma), and
    - index grouped by label (index_grouped_by_label).

  Args:
    config_name: A string indicating the name of config to parameterize the
        model that associates with the dataset.
    exp_uid: A string representing the unique id of experiment to be used in
        model that associates with the dataset.

  Returns:
    An tuple of abovementioned components in the dataset.
  """

  config = load_config(config_name)
  if config_is_wavegan(config):
    return load_dataset_wavegan()

  model_uid = common.get_model_uid(config_name, exp_uid)

  dataset = common.load_dataset(config)
  train_data = dataset.train_data
  attr_train = dataset.attr_train
  path_train = os.path.join(dataset.basepath, 'encoded', model_uid,
                            'encoded_train_data.npz')
  train = np.load(path_train)
  train_mu = train['mu']
  train_sigma = train['sigma']
  train_label = np.argmax(attr_train, axis=-1)  # from one-hot to label
  index_grouped_by_label = common.get_index_grouped_by_label(train_label)

  tf.logging.info('index_grouped_by_label size: %s',
                  [len(_) for _ in index_grouped_by_label])

  tf.logging.info('train loaded from %s', path_train)
  tf.logging.info('train shapes: mu = %s, sigma = %s', train_mu.shape,
                  train_sigma.shape)
  dataset_blob = dataset
  return (dataset_blob, train_data, train_label, train_mu, train_sigma,
          index_grouped_by_label)
Exemplo n.º 2
0
def load_dataset(config_name, exp_uid):
    """Load a dataset from a config's name.

  The loaded dataset consists of:
    - original data (dataset_blob, train_data, train_label),
    - encoded data from a pretrained model (train_mu, train_sigma), and
    - index grouped by label (index_grouped_by_label).

  Args:
    config_name: A string indicating the name of config to parameterize the
        model that associates with the dataset.
    exp_uid: A string representing the unique id of experiment to be used in
        model that associates with the dataset.

  Returns:
    An tuple of abovementioned components in the dataset.
  """

    config = load_config(config_name)
    if config_is_wavegan(config):
        return load_dataset_wavegan()

    model_uid = common.get_model_uid(config_name, exp_uid)

    dataset = common.load_dataset(config)
    train_data = dataset.train_data
    attr_train = dataset.attr_train
    path_train = os.path.join(dataset.basepath, 'encoded', model_uid,
                              'encoded_train_data.npz')
    train = np.load(path_train)
    train_mu = train['mu']
    train_sigma = train['sigma']
    train_label = np.argmax(attr_train, axis=-1)  # from one-hot to label
    index_grouped_by_label = common.get_index_grouped_by_label(train_label)

    tf.logging.info('index_grouped_by_label size: %s',
                    [len(_) for _ in index_grouped_by_label])

    tf.logging.info('train loaded from %s', path_train)
    tf.logging.info('train shapes: mu = %s, sigma = %s', train_mu.shape,
                    train_sigma.shape)
    dataset_blob = dataset
    return (dataset_blob, train_data, train_label, train_mu, train_sigma,
            index_grouped_by_label)
Exemplo n.º 3
0
def main(unused_argv):
    del unused_argv

    # Load Config
    config_name = FLAGS.config
    config_module = importlib.import_module(configs_module_prefix +
                                            '.%s' % config_name)
    config = config_module.config
    model_uid = common.get_model_uid(config_name, FLAGS.exp_uid)
    batch_size = config['batch_size']

    # Load dataset
    dataset = common.load_dataset(config)
    save_path = dataset.save_path
    train_data = dataset.train_data
    attr_train = dataset.attr_train
    eval_data = dataset.eval_data
    attr_eval = dataset.attr_eval

    # Make the directory
    save_dir = os.path.join(save_path, model_uid)
    best_dir = os.path.join(save_dir, 'best')
    tf.gfile.MakeDirs(save_dir)
    tf.gfile.MakeDirs(best_dir)
    tf.logging.info('Save Dir: %s', save_dir)

    np.random.seed(FLAGS.random_seed)
    # We use `N` in variable name to emphasis its being the Number of something.
    N_train = train_data.shape[0]  # pylint:disable=invalid-name
    N_eval = eval_data.shape[0]  # pylint:disable=invalid-name

    # Load Model
    tf.reset_default_graph()
    sess = tf.Session()

    m = model_dataspace.Model(config, name=model_uid)
    _ = m()  # noqa

    # Create summaries
    tf.summary.scalar('Train_Loss', m.vae_loss)
    tf.summary.scalar('Mean_Recon_LL', m.mean_recons)
    tf.summary.scalar('Mean_KL', m.mean_KL)
    scalar_summaries = tf.summary.merge_all()

    x_mean_, x_ = m.x_mean, m.x
    if common.dataset_is_mnist_family(config['dataset']):
        x_mean_ = tf.reshape(x_mean_, [-1, MNIST_SIZE, MNIST_SIZE, 1])
        x_ = tf.reshape(x_, [-1, MNIST_SIZE, MNIST_SIZE, 1])

    x_mean_summary = tf.summary.image('Reconstruction',
                                      nn.tf_batch_image(x_mean_),
                                      max_outputs=1)
    x_summary = tf.summary.image('Original',
                                 nn.tf_batch_image(x_),
                                 max_outputs=1)
    sample_summary = tf.summary.image('Sample',
                                      nn.tf_batch_image(x_mean_),
                                      max_outputs=1)
    # Summary writers
    train_writer = tf.summary.FileWriter(save_dir + '/vae_train', sess.graph)
    eval_writer = tf.summary.FileWriter(save_dir + '/vae_eval', sess.graph)

    # Initialize
    sess.run(tf.global_variables_initializer())

    i_start = 0
    running_N_eval = 30  # pylint:disable=invalid-name
    traces = {
        'i': [],
        'i_pred': [],
        'loss': [],
        'loss_eval': [],
    }

    best_eval_loss = np.inf
    vae_lr_ = np.logspace(np.log10(FLAGS.lr), np.log10(1e-6), FLAGS.n_iters)

    # Train the VAE
    for i in range(i_start, FLAGS.n_iters):
        start = (i * batch_size) % N_train
        end = start + batch_size
        batch = train_data[start:end]
        labels = attr_train[start:end]

        # train op
        res = sess.run([
            m.train_vae, m.vae_loss, m.mean_recons, m.mean_KL, scalar_summaries
        ], {
            m.x: batch,
            m.vae_lr: vae_lr_[i],
            m.labels: labels,
        })
        tf.logging.info('Iter: %d, Loss: %d', i, res[1])
        train_writer.add_summary(res[-1], i)

        if i % FLAGS.n_iters_per_eval == 0:
            # write training reconstructions
            if batch.shape[0] == batch_size:
                res = sess.run([x_summary, x_mean_summary], {
                    m.x: batch,
                    m.labels: labels,
                })
                train_writer.add_summary(res[0], i)
                train_writer.add_summary(res[1], i)

            # write sample reconstructions
            prior_sample = sess.run(m.prior_sample)
            res = sess.run([sample_summary], {
                m.q_z_sample: prior_sample,
                m.labels: labels,
            })
            train_writer.add_summary(res[0], i)

            # write eval summaries
            start = (i * batch_size) % N_eval
            end = start + batch_size
            batch = eval_data[start:end]
            labels = attr_eval[start:end]
            if batch.shape[0] == batch_size:
                res_eval = sess.run([
                    m.vae_loss, m.mean_recons, m.mean_KL, scalar_summaries,
                    x_summary, x_mean_summary
                ], {
                    m.x: batch,
                    m.labels: labels,
                })
                traces['loss_eval'].append(res_eval[0])
                eval_writer.add_summary(res_eval[-3], i)
                eval_writer.add_summary(res_eval[-2], i)
                eval_writer.add_summary(res_eval[-1], i)

        if i % FLAGS.n_iters_per_save == 0:
            smoothed_eval_loss = np.mean(traces['loss_eval'][-running_N_eval:])
            if smoothed_eval_loss < best_eval_loss:
                # Save the best model
                best_eval_loss = smoothed_eval_loss
                save_name = os.path.join(best_dir,
                                         'vae_best_%s.ckpt' % model_uid)
                tf.logging.info('SAVING BEST! %s Iter: %d', save_name, i)
                m.vae_saver.save(sess, save_name)
                with tf.gfile.Open(
                        os.path.join(best_dir, 'best_ckpt_iters.txt'),
                        'w') as f:
                    f.write('%d' % i)
Exemplo n.º 4
0
def main(unused_argv):
    del unused_argv

    # Load Config
    config_name = FLAGS.config
    config_module = importlib.import_module('configs.%s' % config_name)
    config = config_module.config
    model_uid = common.get_model_uid(config_name, FLAGS.exp_uid)
    batch_size = config['batch_size']

    # Load dataset
    dataset = common.load_dataset(config)
    basepath = dataset.basepath
    save_path = dataset.save_path
    train_data = dataset.train_data
    eval_data = dataset.eval_data

    # Make the directory
    save_dir = os.path.join(save_path, model_uid)
    best_dir = os.path.join(save_dir, 'best')
    tf.gfile.MakeDirs(save_dir)
    tf.gfile.MakeDirs(best_dir)
    tf.logging.info('Save Dir: %s', save_dir)

    # Load Model
    tf.reset_default_graph()
    sess = tf.Session()
    m = model_dataspace.Model(config, name=model_uid)
    _ = m()  # noqa

    # Initialize
    sess.run(tf.global_variables_initializer())

    # Load
    m.vae_saver.restore(sess,
                        os.path.join(best_dir, 'vae_best_%s.ckpt' % model_uid))

    # Encode
    def encode(data):
        """Encode the data in dataspace to latent spaceself.

    This script runs the encoding in batched mode to limit GPU memory usage.

    Args:
      data: A numpy array of data to be encoded.

    Returns:
      A object with instances `mu` and `sigma`, the parameters of encoded
      distributions in the latent space.
    """
        mu_list, sigma_list = [], []

        for i in range(0, len(data), batch_size):
            start, end = i, min(i + batch_size, len(data))
            batch = data[start:end]

            mu, sigma = sess.run([m.mu, m.sigma], {m.x: batch})
            mu_list.append(mu)
            sigma_list.append(sigma)

        mu = np.concatenate(mu_list)
        sigma = np.concatenate(sigma_list)

        return common.ObjectBlob(mu=mu, sigma=sigma)

    encoded_train_data = encode(train_data)
    tf.logging.info(
        'encode train_data: mu.shape = %s sigma.shape = %s',
        encoded_train_data.mu.shape,
        encoded_train_data.sigma.shape,
    )

    encoded_eval_data = encode(eval_data)
    tf.logging.info(
        'encode eval_data: mu.shape = %s sigma.shape = %s',
        encoded_eval_data.mu.shape,
        encoded_eval_data.sigma.shape,
    )

    # Save encoded as npz file
    encoded_save_path = os.path.join(basepath, 'encoded', model_uid)
    tf.gfile.MakeDirs(encoded_save_path)
    tf.logging.info('encoded train_data saved to %s',
                    os.path.join(encoded_save_path, 'encoded_train_data.npz'))
    np.savez(
        os.path.join(encoded_save_path, 'encoded_train_data.npz'),
        mu=encoded_train_data.mu,
        sigma=encoded_train_data.sigma,
    )
    tf.logging.info('encoded eval_data saved to %s',
                    os.path.join(encoded_save_path, 'encoded_eval_data.npz'))
    np.savez(
        os.path.join(encoded_save_path, 'encoded_eval_data.npz'),
        mu=encoded_eval_data.mu,
        sigma=encoded_eval_data.sigma,
    )
Exemplo n.º 5
0
def main(unused_argv):
    del unused_argv

    # Load Config
    config_name = FLAGS.config
    config_module = importlib.import_module('configs.%s' % config_name)
    config = config_module.config
    model_uid = common.get_model_uid(config_name, FLAGS.exp_uid)
    n_latent = config['n_latent']

    # Load dataset
    dataset = common.load_dataset(config)
    basepath = dataset.basepath
    save_path = dataset.save_path
    train_data = dataset.train_data

    # Make the directory
    save_dir = os.path.join(save_path, model_uid)
    best_dir = os.path.join(save_dir, 'best')
    tf.gfile.MakeDirs(save_dir)
    tf.gfile.MakeDirs(best_dir)
    tf.logging.info('Save Dir: %s', save_dir)

    # Set random seed
    np.random.seed(FLAGS.random_seed)
    tf.set_random_seed(FLAGS.random_seed)

    # Load Model
    tf.reset_default_graph()
    sess = tf.Session()
    with tf.device(tf.train.replica_device_setter(ps_tasks=0)):
        m = model_dataspace.Model(config, name=model_uid)
        _ = m()  # noqa

        # Initialize
        sess.run(tf.global_variables_initializer())

        # Load
        m.vae_saver.restore(
            sess, os.path.join(best_dir, 'vae_best_%s.ckpt' % model_uid))

        # Sample from prior
        sample_count = 64

        image_path = os.path.join(basepath, 'sample', model_uid)
        tf.gfile.MakeDirs(image_path)

        # from prior
        z_p = np.random.randn(sample_count, m.n_latent)
        x_p = sess.run(m.x_mean, {m.z: z_p})
        x_p = common.post_proc(x_p, config)
        common.save_image(common.batch_image(x_p),
                          os.path.join(image_path, 'sample_prior.png'))

        # Sample from priro, as Grid
        boundary = 2.0
        number_grid = 50
        blob = common.make_grid(boundary=boundary,
                                number_grid=number_grid,
                                dim_latent=n_latent)
        z_grid, dim_grid = blob.z_grid, blob.dim_grid
        x_grid = sess.run(m.x_mean, {m.z: z_grid})
        x_grid = common.post_proc(x_grid, config)
        batch_image_grid = common.make_batch_image_grid(dim_grid, number_grid)
        common.save_image(batch_image_grid(x_grid),
                          os.path.join(image_path, 'sample_grid.png'))

        # Reconstruction
        sample_count = 64
        x_real = train_data[:sample_count]
        mu, sigma = sess.run([m.mu, m.sigma], {m.x: x_real})
        x_rec = sess.run(m.x_mean, {m.mu: mu, m.sigma: sigma})
        x_rec = common.post_proc(x_rec, config)

        x_real = common.post_proc(x_real, config)
        common.save_image(common.batch_image(x_real),
                          os.path.join(image_path, 'image_real.png'))
        common.save_image(common.batch_image(x_rec),
                          os.path.join(image_path, 'image_rec.png'))
def main(unused_argv):
    del unused_argv

    # Load Config
    config_name = FLAGS.config
    config_module = importlib.import_module(configs_module_prefix +
                                            '.%s' % config_name)
    config = config_module.config
    model_uid = common.get_model_uid(config_name, FLAGS.exp_uid)
    batch_size = config['batch_size']

    # Load dataset
    dataset = common.load_dataset(config)
    save_path = dataset.save_path
    train_data = dataset.train_data
    attr_train = dataset.attr_train
    eval_data = dataset.eval_data
    attr_eval = dataset.attr_eval

    # Make the directory
    save_dir = os.path.join(save_path, model_uid)
    best_dir = os.path.join(save_dir, 'best')
    tf.gfile.MakeDirs(save_dir)
    tf.gfile.MakeDirs(best_dir)
    tf.logging.info('Save Dir: %s', save_dir)

    np.random.seed(10003)
    N_train = train_data.shape[0]
    N_eval = eval_data.shape[0]

    # Load Model
    tf.reset_default_graph()
    sess = tf.Session()
    m = model_dataspace.Model(config, name=model_uid)
    _ = m()  # noqa

    # Create summaries
    y_true = m.labels
    y_pred = tf.cast(tf.greater(m.pred_classifier, 0.5), tf.int32)
    accuracy = tf.reduce_mean(tf.cast(tf.equal(y_true, y_pred), tf.float32))

    tf.summary.scalar('Loss', m.classifier_loss)
    tf.summary.scalar('Accuracy', accuracy)
    scalar_summaries = tf.summary.merge_all()

    # Summary writers
    train_writer = tf.summary.FileWriter(save_dir + '/train', sess.graph)
    eval_writer = tf.summary.FileWriter(save_dir + '/eval', sess.graph)

    # Initialize
    sess.run(tf.global_variables_initializer())

    i_start = 0
    running_N_eval = 30
    traces = {
        'i': [],
        'i_pred': [],
        'loss': [],
        'loss_eval': [],
    }

    best_eval_loss = np.inf
    classifier_lr_ = np.logspace(np.log10(FLAGS.lr), np.log10(1e-6),
                                 FLAGS.n_iters)

    # Train the Classifier
    for i in range(i_start, FLAGS.n_iters):
        start = (i * batch_size) % N_train
        end = start + batch_size
        batch = train_data[start:end]
        labels = attr_train[start:end]

        # train op
        res = sess.run(
            [m.train_classifier, m.classifier_loss, scalar_summaries], {
                m.x: batch,
                m.labels: labels,
                m.classifier_lr: classifier_lr_[i]
            })
        tf.logging.info('Iter: %d, Loss: %.2e', i, res[1])
        train_writer.add_summary(res[-1], i)

        if i % 10 == 0:
            # write training reconstructions
            if batch.shape[0] == batch_size:
                # write eval summaries
                start = (i * batch_size) % N_eval
                end = start + batch_size
                batch = eval_data[start:end]
                labels = attr_eval[start:end]

                if batch.shape[0] == batch_size:
                    res_eval = sess.run([m.classifier_loss, scalar_summaries],
                                        {
                                            m.x: batch,
                                            m.labels: labels,
                                        })
                    traces['loss_eval'].append(res_eval[0])
                    eval_writer.add_summary(res_eval[-1], i)

        if i % FLAGS.n_iters_per_save == 0:
            smoothed_eval_loss = np.mean(traces['loss_eval'][-running_N_eval:])
            if smoothed_eval_loss < best_eval_loss:

                # Save the best model
                best_eval_loss = smoothed_eval_loss
                save_name = os.path.join(best_dir,
                                         'classifier_best_%s.ckpt' % model_uid)
                tf.logging.info('SAVING BEST! %s Iter: %d', save_name, i)
                m.classifier_saver.save(sess, save_name)
                with tf.gfile.Open(
                        os.path.join(best_dir, 'best_ckpt_iters.txt'),
                        'w') as f:
                    f.write('%d' % i)
Exemplo n.º 7
0
def main(unused_argv):
  del unused_argv

  # Load Config
  config_name = FLAGS.config
  config_module = importlib.import_module(configs_module_prefix +
                                          '.%s' % config_name)
  config = config_module.config
  model_uid = common.get_model_uid(config_name, FLAGS.exp_uid)
  batch_size = config['batch_size']

  # Load dataset
  dataset = common.load_dataset(config)
  save_path = dataset.save_path
  train_data = dataset.train_data
  attr_train = dataset.attr_train
  eval_data = dataset.eval_data
  attr_eval = dataset.attr_eval

  # Make the directory
  save_dir = os.path.join(save_path, model_uid)
  best_dir = os.path.join(save_dir, 'best')
  tf.gfile.MakeDirs(save_dir)
  tf.gfile.MakeDirs(best_dir)
  tf.logging.info('Save Dir: %s', save_dir)

  np.random.seed(FLAGS.random_seed)
  # We use `N` in variable name to emphasis its being the Number of something.
  N_train = train_data.shape[0]  # pylint:disable=invalid-name
  N_eval = eval_data.shape[0]  # pylint:disable=invalid-name

  # Load Model
  tf.reset_default_graph()
  sess = tf.Session()

  m = model_dataspace.Model(config, name=model_uid)
  _ = m()  # noqa

  # Create summaries
  tf.summary.scalar('Train_Loss', m.vae_loss)
  tf.summary.scalar('Mean_Recon_LL', m.mean_recons)
  tf.summary.scalar('Mean_KL', m.mean_KL)
  scalar_summaries = tf.summary.merge_all()

  x_mean_, x_ = m.x_mean, m.x
  if common.dataset_is_mnist_family(config['dataset']):
    x_mean_ = tf.reshape(x_mean_, [-1, MNIST_SIZE, MNIST_SIZE, 1])
    x_ = tf.reshape(x_, [-1, MNIST_SIZE, MNIST_SIZE, 1])

  x_mean_summary = tf.summary.image(
      'Reconstruction', nn.tf_batch_image(x_mean_), max_outputs=1)
  x_summary = tf.summary.image('Original', nn.tf_batch_image(x_), max_outputs=1)
  sample_summary = tf.summary.image(
      'Sample', nn.tf_batch_image(x_mean_), max_outputs=1)
  # Summary writers
  train_writer = tf.summary.FileWriter(save_dir + '/vae_train', sess.graph)
  eval_writer = tf.summary.FileWriter(save_dir + '/vae_eval', sess.graph)

  # Initialize
  sess.run(tf.global_variables_initializer())

  i_start = 0
  running_N_eval = 30  # pylint:disable=invalid-name
  traces = {
      'i': [],
      'i_pred': [],
      'loss': [],
      'loss_eval': [],
  }

  best_eval_loss = np.inf
  vae_lr_ = np.logspace(np.log10(FLAGS.lr), np.log10(1e-6), FLAGS.n_iters)

  # Train the VAE
  for i in range(i_start, FLAGS.n_iters):
    start = (i * batch_size) % N_train
    end = start + batch_size
    batch = train_data[start:end]
    labels = attr_train[start:end]

    # train op
    res = sess.run(
        [m.train_vae, m.vae_loss, m.mean_recons, m.mean_KL, scalar_summaries], {
            m.x: batch,
            m.vae_lr: vae_lr_[i],
            m.labels: labels,
        })
    tf.logging.info('Iter: %d, Loss: %d', i, res[1])
    train_writer.add_summary(res[-1], i)

    if i % FLAGS.n_iters_per_eval == 0:
      # write training reconstructions
      if batch.shape[0] == batch_size:
        res = sess.run([x_summary, x_mean_summary], {
            m.x: batch,
            m.labels: labels,
        })
        train_writer.add_summary(res[0], i)
        train_writer.add_summary(res[1], i)

      # write sample reconstructions
      prior_sample = sess.run(m.prior_sample)
      res = sess.run([sample_summary], {
          m.q_z_sample: prior_sample,
          m.labels: labels,
      })
      train_writer.add_summary(res[0], i)

      # write eval summaries
      start = (i * batch_size) % N_eval
      end = start + batch_size
      batch = eval_data[start:end]
      labels = attr_eval[start:end]
      if batch.shape[0] == batch_size:
        res_eval = sess.run([
            m.vae_loss, m.mean_recons, m.mean_KL, scalar_summaries, x_summary,
            x_mean_summary
        ], {
            m.x: batch,
            m.labels: labels,
        })
        traces['loss_eval'].append(res_eval[0])
        eval_writer.add_summary(res_eval[-3], i)
        eval_writer.add_summary(res_eval[-2], i)
        eval_writer.add_summary(res_eval[-1], i)

    if i % FLAGS.n_iters_per_save == 0:
      smoothed_eval_loss = np.mean(traces['loss_eval'][-running_N_eval:])
      if smoothed_eval_loss < best_eval_loss:
        # Save the best model
        best_eval_loss = smoothed_eval_loss
        save_name = os.path.join(best_dir, 'vae_best_%s.ckpt' % model_uid)
        tf.logging.info('SAVING BEST! %s Iter: %d', save_name, i)
        m.vae_saver.save(sess, save_name)
        with tf.gfile.Open(os.path.join(best_dir, 'best_ckpt_iters.txt'),
                           'w') as f:
          f.write('%d' % i)
def main(unused_argv):
  del unused_argv

  # Load Config
  config_name = FLAGS.config
  config_module = importlib.import_module(configs_module_prefix +
                                          '.%s' % config_name)
  config = config_module.config
  model_uid = common.get_model_uid(config_name, FLAGS.exp_uid)
  batch_size = config['batch_size']

  # Load dataset
  dataset = common.load_dataset(config)
  save_path = dataset.save_path
  train_data = dataset.train_data
  attr_train = dataset.attr_train
  eval_data = dataset.eval_data
  attr_eval = dataset.attr_eval

  # Make the directory
  save_dir = os.path.join(save_path, model_uid)
  best_dir = os.path.join(save_dir, 'best')
  tf.gfile.MakeDirs(save_dir)
  tf.gfile.MakeDirs(best_dir)
  tf.logging.info('Save Dir: %s', save_dir)

  np.random.seed(10003)
  N_train = train_data.shape[0]
  N_eval = eval_data.shape[0]

  # Load Model
  tf.reset_default_graph()
  sess = tf.Session()
  m = model_dataspace.Model(config, name=model_uid)
  _ = m()  # noqa

  # Create summaries
  y_true = m.labels
  y_pred = tf.cast(tf.greater(m.pred_classifier, 0.5), tf.int32)
  accuracy = tf.reduce_mean(tf.cast(tf.equal(y_true, y_pred), tf.float32))

  tf.summary.scalar('Loss', m.classifier_loss)
  tf.summary.scalar('Accuracy', accuracy)
  scalar_summaries = tf.summary.merge_all()

  # Summary writers
  train_writer = tf.summary.FileWriter(save_dir + '/train', sess.graph)
  eval_writer = tf.summary.FileWriter(save_dir + '/eval', sess.graph)

  # Initialize
  sess.run(tf.global_variables_initializer())

  i_start = 0
  running_N_eval = 30
  traces = {
      'i': [],
      'i_pred': [],
      'loss': [],
      'loss_eval': [],
  }

  best_eval_loss = np.inf
  classifier_lr_ = np.logspace(
      np.log10(FLAGS.lr), np.log10(1e-6), FLAGS.n_iters)

  # Train the Classifier
  for i in range(i_start, FLAGS.n_iters):
    start = (i * batch_size) % N_train
    end = start + batch_size
    batch = train_data[start:end]
    labels = attr_train[start:end]

    # train op
    res = sess.run([m.train_classifier, m.classifier_loss, scalar_summaries], {
        m.x: batch,
        m.labels: labels,
        m.classifier_lr: classifier_lr_[i]
    })
    tf.logging.info('Iter: %d, Loss: %.2e', i, res[1])
    train_writer.add_summary(res[-1], i)

    if i % 10 == 0:
      # write training reconstructions
      if batch.shape[0] == batch_size:
        # write eval summaries
        start = (i * batch_size) % N_eval
        end = start + batch_size
        batch = eval_data[start:end]
        labels = attr_eval[start:end]

        if batch.shape[0] == batch_size:
          res_eval = sess.run([m.classifier_loss, scalar_summaries], {
              m.x: batch,
              m.labels: labels,
          })
          traces['loss_eval'].append(res_eval[0])
          eval_writer.add_summary(res_eval[-1], i)

    if i % FLAGS.n_iters_per_save == 0:
      smoothed_eval_loss = np.mean(traces['loss_eval'][-running_N_eval:])
      if smoothed_eval_loss < best_eval_loss:

        # Save the best model
        best_eval_loss = smoothed_eval_loss
        save_name = os.path.join(best_dir,
                                 'classifier_best_%s.ckpt' % model_uid)
        tf.logging.info('SAVING BEST! %s Iter: %d', save_name, i)
        m.classifier_saver.save(sess, save_name)
        with tf.gfile.Open(os.path.join(best_dir, 'best_ckpt_iters.txt'),
                           'w') as f:
          f.write('%d' % i)
Exemplo n.º 9
0
def main(unused_argv):
  del unused_argv

  # Load Config
  config_name = FLAGS.config
  config_module = importlib.import_module('configs.%s' % config_name)
  config = config_module.config
  model_uid = common.get_model_uid(config_name, FLAGS.exp_uid)
  batch_size = config['batch_size']

  # Load dataset
  dataset = common.load_dataset(config)
  basepath = dataset.basepath
  save_path = dataset.save_path
  train_data = dataset.train_data
  eval_data = dataset.eval_data

  # Make the directory
  save_dir = os.path.join(save_path, model_uid)
  best_dir = os.path.join(save_dir, 'best')
  tf.gfile.MakeDirs(save_dir)
  tf.gfile.MakeDirs(best_dir)
  tf.logging.info('Save Dir: %s', save_dir)

  # Load Model
  tf.reset_default_graph()
  sess = tf.Session()
  m = model_dataspace.Model(config, name=model_uid)
  _ = m()  # noqa

  # Initialize
  sess.run(tf.global_variables_initializer())

  # Load
  m.vae_saver.restore(sess,
                      os.path.join(best_dir, 'vae_best_%s.ckpt' % model_uid))

  # Encode
  def encode(data):
    """Encode the data in dataspace to latent spaceself.

    This script runs the encoding in batched mode to limit GPU memory usage.

    Args:
      data: A numpy array of data to be encoded.

    Returns:
      A object with instances `mu` and `sigma`, the parameters of encoded
      distributions in the latent space.
    """
    mu_list, sigma_list = [], []

    for i in range(0, len(data), batch_size):
      start, end = i, min(i + batch_size, len(data))
      batch = data[start:end]

      mu, sigma = sess.run([m.mu, m.sigma], {m.x: batch})
      mu_list.append(mu)
      sigma_list.append(sigma)

    mu = np.concatenate(mu_list)
    sigma = np.concatenate(sigma_list)

    return common.ObjectBlob(mu=mu, sigma=sigma)

  encoded_train_data = encode(train_data)
  tf.logging.info(
      'encode train_data: mu.shape = %s sigma.shape = %s',
      encoded_train_data.mu.shape,
      encoded_train_data.sigma.shape,
  )

  encoded_eval_data = encode(eval_data)
  tf.logging.info(
      'encode eval_data: mu.shape = %s sigma.shape = %s',
      encoded_eval_data.mu.shape,
      encoded_eval_data.sigma.shape,
  )

  # Save encoded as npz file
  encoded_save_path = os.path.join(basepath, 'encoded', model_uid)
  tf.gfile.MakeDirs(encoded_save_path)
  tf.logging.info('encoded train_data saved to %s',
                  os.path.join(encoded_save_path, 'encoded_train_data.npz'))
  np.savez(
      os.path.join(encoded_save_path, 'encoded_train_data.npz'),
      mu=encoded_train_data.mu,
      sigma=encoded_train_data.sigma,
  )
  tf.logging.info('encoded eval_data saved to %s',
                  os.path.join(encoded_save_path, 'encoded_eval_data.npz'))
  np.savez(
      os.path.join(encoded_save_path, 'encoded_eval_data.npz'),
      mu=encoded_eval_data.mu,
      sigma=encoded_eval_data.sigma,
  )
Exemplo n.º 10
0
def main(unused_argv):
  del unused_argv

  # Load Config
  config_name = FLAGS.config
  config_module = importlib.import_module('configs.%s' % config_name)
  config = config_module.config
  model_uid = common.get_model_uid(config_name, FLAGS.exp_uid)
  n_latent = config['n_latent']

  # Load dataset
  dataset = common.load_dataset(config)
  basepath = dataset.basepath
  save_path = dataset.save_path
  train_data = dataset.train_data

  # Make the directory
  save_dir = os.path.join(save_path, model_uid)
  best_dir = os.path.join(save_dir, 'best')
  tf.gfile.MakeDirs(save_dir)
  tf.gfile.MakeDirs(best_dir)
  tf.logging.info('Save Dir: %s', save_dir)

  # Set random seed
  np.random.seed(FLAGS.random_seed)
  tf.set_random_seed(FLAGS.random_seed)

  # Load Model
  tf.reset_default_graph()
  sess = tf.Session()
  with tf.device(tf.train.replica_device_setter(ps_tasks=0)):
    m = model_dataspace.Model(config, name=model_uid)
    _ = m()  # noqa

    # Initialize
    sess.run(tf.global_variables_initializer())

    # Load
    m.vae_saver.restore(sess,
                        os.path.join(best_dir, 'vae_best_%s.ckpt' % model_uid))

    # Sample from prior
    sample_count = 64

    image_path = os.path.join(basepath, 'sample', model_uid)
    tf.gfile.MakeDirs(image_path)

    # from prior
    z_p = np.random.randn(sample_count, m.n_latent)
    x_p = sess.run(m.x_mean, {m.z: z_p})
    x_p = common.post_proc(x_p, config)
    common.save_image(
        common.batch_image(x_p), os.path.join(image_path, 'sample_prior.png'))

    # Sample from priro, as Grid
    boundary = 2.0
    number_grid = 50
    blob = common.make_grid(
        boundary=boundary, number_grid=number_grid, dim_latent=n_latent)
    z_grid, dim_grid = blob.z_grid, blob.dim_grid
    x_grid = sess.run(m.x_mean, {m.z: z_grid})
    x_grid = common.post_proc(x_grid, config)
    batch_image_grid = common.make_batch_image_grid(dim_grid, number_grid)
    common.save_image(
        batch_image_grid(x_grid), os.path.join(image_path, 'sample_grid.png'))

    # Reconstruction
    sample_count = 64
    x_real = train_data[:sample_count]
    mu, sigma = sess.run([m.mu, m.sigma], {m.x: x_real})
    x_rec = sess.run(m.x_mean, {m.mu: mu, m.sigma: sigma})
    x_rec = common.post_proc(x_rec, config)

    x_real = common.post_proc(x_real, config)
    common.save_image(
        common.batch_image(x_real), os.path.join(image_path, 'image_real.png'))
    common.save_image(
        common.batch_image(x_rec), os.path.join(image_path, 'image_rec.png'))