Exemplo n.º 1
0
def get_DFT(shape):
    """
    Get the DFT fast operation dictionary for the given image shape.

    Parameters
    ----------
    shape : list or tuple
        The shape of the image which the dictionary is the DFT dictionary.

    Returns
    -------
    matrix : magni.utils.matrices.Matrix
        The specified DFT dictionary.

    See Also
    --------
    magni.utils.matrices.Matrix : The matrix emulator class.

    Examples
    --------
    Create a dummy image:

    >>> import numpy as np, magni
    >>> img = np.random.randn(64, 64)
    >>> vec = magni.imaging.mat2vec(img)

    Perform DFT in the ordinary way:

    >>> dft_normal = magni.imaging._fastops.dft2(vec, img.shape)

    Perform DFT using the present function:

    >>> from magni.imaging.dictionaries import get_DFT
    >>> matrix = get_DFT(img.shape)
    >>> dft_matrix = matrix.T.dot(vec)

    Check that the two ways produce the same result:

    >>> np.allclose(dft_matrix, dft_normal)
    True

    """

    @_decorate_validation
    def validate_input():
        _levels('shape', (_generic(None, 'explicit collection', len_=2),
                          _numeric(None, 'integer', range_='[1;inf)')))

    validate_input()

    entries = shape[0] * shape[1]
    return _Matrix(_fastops.idft2, _fastops.dft2, (shape,), (entries, entries))
Exemplo n.º 2
0
def get_DCT(shape):
    """
    Get the DCT fast operation dictionary for the given image shape.

    Parameters
    ----------
    shape : list or tuple
        The shape of the image which the dictionary is the DCT dictionary.

    Returns
    -------
    matrix : magni.utils.matrices.Matrix
        The specified DCT dictionary.

    See Also
    --------
    magni.utils.matrices.Matrix : The matrix emulator class.

    Examples
    --------
    Create a dummy image:

    >>> img = np.random.randn(64, 64)
    >>> vec = magni.imaging.mat2vec(img)

    Perform DCT in the ordinary way:

    >>> dct_normal = magni.imaging._fastops.dct2(vec, *img.shape)

    Perform DCT using the present function:

    >>> from magni.imaging.dictionaries import get_DCT
    >>> matrix = get_DCT(img.shape)
    >>> dct_matrix = matrix.T.dot(vec)

    Check that the two ways produce the same result:

    >>> np.allclose(dct_matrix, dct_normal)
    True

    """

    _validate_get_DCT(shape)

    entries = shape[0] * shape[1]
    return _Matrix(_fastops.idct2, _fastops.dct2, shape, (entries, entries))
Exemplo n.º 3
0
def get_DCT(shape, overcomplete_shape=None):
    """
    Get the DCT fast operation dictionary for the given image shape.

    Parameters
    ----------
    shape : list or tuple
        The shape of the image for which the dictionary is the DCT dictionary.
    overcomplete_shape : list or tuple, optional
        The shape of the (overcomplete) frequency domain for the DCT
        dictionary. The entries must be greater than or equal to the
        corresponding entries in `shape`.

    Returns
    -------
    matrix : magni.utils.matrices.Matrix
        The specified DCT dictionary.

    See Also
    --------
    magni.utils.matrices.Matrix : The matrix emulator class.

    Examples
    --------
    Create a dummy image:

    >>> import numpy as np, magni
    >>> img = np.random.randn(64, 64)
    >>> vec = magni.imaging.mat2vec(img)

    Perform DCT in the ordinary way:

    >>> dct_normal = magni.imaging.dictionaries._fastops.dct2(vec, img.shape)

    Perform DCT using the present function:

    >>> from magni.imaging.dictionaries import get_DCT
    >>> matrix = get_DCT(img.shape)
    >>> dct_matrix = matrix.T.dot(vec)

    Check that the two ways produce the same result:

    >>> np.allclose(dct_matrix, dct_normal)
    True

    Compute the overcomplete transform (and back again) and check that the
    resulting image is identical to the original. Notice how this example first
    ensures that the necessary version of SciPy is available:

    >>> from pkg_resources import parse_version
    >>> from scipy import __version__ as _scipy_version
    >>> if parse_version(_scipy_version) >= parse_version('0.16.0'):
    ...     matrix = get_DCT(img.shape, img.shape)
    ...     dct_matrix = matrix.T.dot(vec)
    ...     vec_roundtrip = matrix.dot(dct_matrix)
    ...     np.allclose(vec, vec_roundtrip)
    ... else:
    ...     True
    True

    """
    @_decorate_validation
    def validate_input():
        _levels('shape', (_generic(None, 'explicit collection', len_=2),
                          _numeric(None, 'integer', range_='[1;inf)')))

        if overcomplete_shape is not None:
            _generic('overcomplete_shape', 'explicit collection', len_=2),
            _numeric(('overcomplete_shape', 0),
                     'integer',
                     range_='[{};inf)'.format(shape[0]))
            _numeric(('overcomplete_shape', 1),
                     'integer',
                     range_='[{};inf)'.format(shape[1]))

    validate_input()

    entries = shape[0] * shape[1]

    if overcomplete_shape is None:
        args = (shape, )
        shape = (entries, entries)
    else:
        if _parse_version(_scipy_version) < _parse_version('0.16.0'):
            raise NotImplementedError(
                'Over-complete DCT requires SciPy >= 0.16.0')

        args = (shape, overcomplete_shape)
        shape = (entries, overcomplete_shape[0] * overcomplete_shape[1])

    return _Matrix(_fastops.idct2, _fastops.dct2, args, shape)
Exemplo n.º 4
0
def get_DFT(shape, overcomplete_shape=None):
    """
    Get the DFT fast operation dictionary for the given image shape.

    Parameters
    ----------
    shape : list or tuple
        The shape of the image for which the dictionary is the DFT dictionary.
    overcomplete_shape : list or tuple, optional
        The shape of the (overcomplete) frequency domain for the DFT
        dictionary. The entries must be greater than or equal to the
        corresponding entries in `shape`.

    Returns
    -------
    matrix : magni.utils.matrices.Matrix
        The specified DFT dictionary.

    See Also
    --------
    magni.utils.matrices.Matrix : The matrix emulator class.

    Examples
    --------
    Create a dummy image:

    >>> import numpy as np, magni
    >>> img = np.random.randn(64, 64)
    >>> vec = magni.imaging.mat2vec(img)

    Perform DFT in the ordinary way:

    >>> dft_normal = magni.imaging.dictionaries._fastops.dft2(vec, img.shape)

    Perform DFT using the present function:

    >>> from magni.imaging.dictionaries import get_DFT
    >>> matrix = get_DFT(img.shape)
    >>> dft_matrix = matrix.conj().T.dot(vec)

    Check that the two ways produce the same result:

    >>> np.allclose(dft_matrix, dft_normal)
    True

    Compute the overcomplete transform (and back again):

    >>> matrix = get_DFT(img.shape, img.shape)
    >>> dft_matrix = matrix.conj().T.dot(vec)
    >>> vec_roundtrip = matrix.dot(dft_matrix)

    Check that the twice transformed image is identical to the
    original:

    >>> np.allclose(vec, vec_roundtrip)
    True

    """
    @_decorate_validation
    def validate_input():
        _levels('shape', (_generic(None, 'explicit collection', len_=2),
                          _numeric(None, 'integer', range_='[1;inf)')))

        if overcomplete_shape is not None:
            _generic('overcomplete_shape', 'explicit collection', len_=2),
            _numeric(('overcomplete_shape', 0),
                     'integer',
                     range_='[{};inf)'.format(shape[0]))
            _numeric(('overcomplete_shape', 1),
                     'integer',
                     range_='[{};inf)'.format(shape[1]))

    validate_input()

    entries = shape[0] * shape[1]

    if overcomplete_shape is None:
        args = (shape, )
        shape = (entries, entries)
    else:
        args = (shape, overcomplete_shape)
        shape = (entries, overcomplete_shape[0] * overcomplete_shape[1])

    return _Matrix(_fastops.idft2, _fastops.dft2, args, shape, is_complex=True)
Exemplo n.º 5
0
def construct_measurement_matrix(coords, h, w):
    """
    Construct a measurement matrix extracting the specified measurements.

    Parameters
    ----------
    coords : ndarray
        The `k` floating point coordinates arranged into a 2D array where each
        row is a coordinate pair (x, y), such that `coords` has size `k` x 2.
    h : int
        The height of the image measured in pixels.
    w : int
        The width of the image measured in pixels.

    Returns
    -------
    Phi : magni.utils.matrices.Matrix
        The constructed measurement matrix.

    See Also
    --------
    magni.utils.matrices.Matrix : The matrix emulator class.

    Notes
    -----
    The function constructs two functions: one for extracting pixels at the
    coordinates specified and one for the transposed operation. These functions
    are then wrapped by a matrix emulator which is returned.

    Examples
    --------
    Create a dummy 5 by 5 pixel image and an example sampling pattern:

    >>> import numpy as np, magni
    >>> img = np.arange(25, dtype=np.float).reshape(5, 5)
    >>> vec = magni.imaging.mat2vec(img)
    >>> coords = magni.imaging.measurements.uniform_line_sample_image(
    ...              5, 5, 16., 17)

    Sample the image in the ordinary way:

    >>> unique = magni.imaging.measurements.unique_pixels(coords)
    >>> samples_normal = img[unique[:, 1], unique[:, 0]]
    >>> samples_normal = samples_normal.reshape((len(unique), 1))

    Sample the image using the present function:

    >>> from magni.imaging.measurements import construct_measurement_matrix
    >>> matrix = construct_measurement_matrix(coords, *img.shape)
    >>> samples_matrix = matrix.dot(vec)

    Check that the two ways produce the same result:

    >>> np.allclose(samples_matrix, samples_normal)
    True

    """
    @_decorate_validation
    def validate_input():
        _numeric('coords', ('integer', 'floating'), shape=(-1, 2))
        _numeric('h', 'integer', range_='[1;inf)')
        _numeric('w', 'integer', range_='[1;inf)')
        _numeric('coords[:, 0]', ('integer', 'floating'),
                 range_='[0;{}]'.format(w),
                 shape=(-1, ),
                 var=coords[:, 0])
        _numeric('coords[:, 1]', ('integer', 'floating'),
                 range_='[0;{}]'.format(h),
                 shape=(-1, ),
                 var=coords[:, 1])

    validate_input()

    coords = _unique_pixels(coords)
    mask = coords[:, 0] * w + coords[:, 1]

    def measure(vec):
        return vec[mask]

    def measure_T(vec):
        output = np.zeros((h * w, 1), dtype=vec.dtype)
        output[mask] = vec
        return output

    return _Matrix(measure, measure_T, [], (len(mask), h * w))
Exemplo n.º 6
0
def construct_measurement_matrix(coords, h, w):
    """
    Construct a measurement matrix extracting the specified measurements.

    Parameters
    ----------
    coords : ndarray
        The `k` floating point coordinates arranged into a 2D array where each
        row is a coordinate pair (x, y), such that `coords` has size `k` x 2.

    Returns
    -------
    Phi : magni.utils.matrices.Matrix
        The constructed measurement matrix.

    See Also
    --------
    magni.utils.matrices.Matrix : The matrix emulator class.

    Notes
    -----
    The function construct two functions: one for extracting pixels at the
    coordinates specified and one for the transposed operation. These functions
    are then wrapped by a matrix emulator which is returned.

    Examples
    --------
    Create a dummy 5 by 5 pixel image and an example sampling pattern:

    >>> img = np.arange(25, dtype=np.float).reshape(5, 5)
    >>> vec = magni.imaging.mat2vec(img)
    >>> coords = magni.imaging.measurements.uniform_line_sample_image(
    ...              5, 5, 16., 17)

    Sample the image in the ordinary way:

    >>> unique = magni.imaging.measurements.unique_pixels(coords)
    >>> samples_normal = img[unique[:, 1], unique[:, 0]]
    >>> samples_normal = samples_normal.reshape((len(unique), 1))

    Sample the image using the present function:

    >>> from magni.imaging.measurements import construct_measurement_matrix
    >>> matrix = construct_measurement_matrix(coords, *img.shape)
    >>> samples_matrix = matrix.dot(vec)

    Check that the two ways produce the same result:

    >>> np.allclose(samples_matrix, samples_normal)
    True

    """

    _validate_construct_measurement_matrix(coords, h, w)

    coords = unique_pixels(coords)
    mask = coords[:, 0] * w + coords[:, 1]

    def measure(vec):
        return vec[mask]

    def measure_T(vec):
        output = np.zeros((h * w, 1))
        output[mask] = vec
        return output

    return _Matrix(measure, measure_T, [], (len(mask), h * w))