def main(_): args = flags.FLAGS print("\nParameters:") for attr, value in sorted(args.__flags.items()): print("{}={}".format(attr.upper(), value)) print("") m(args)
def main(_): if config.debug: #config.mode = "check" config.num_batches = 100 config.log_period = 1 config.save_period = 1 config.eval_period = 1 config.batch_size = 2 config.val_num_batches = 3 config.out_dir = "debug" #print(config.test_batch_size) if config.model_name.endswith("flat"): if config.data_from=="reuters": config.n_classes = 18 if config.data_from=="20newsgroup": config.n_classes = 20 config.multilabel_threshold = 0.053 else: if config.data_from=="reuters": config.n_classes = 21 if config.data_from=="20newsgroup": config.n_classes = 29 if config.data_from == "reuters": config.max_docs_length = 818 config.tree1 = np.array([2,3,4,5,6,7,8]) config.tree2 = np.array([9,10,11,12,13,14,15]) config.tree3 = np.array([16,17,18,19]) config.layer1 = np.array([2, 9, 16]) config.layer2 = np.array([3, 4, 10, 11, 17, 19]) config.layer3 = np.array([5, 6, 7, 8, 12, 13, 14, 15, 18]) if config.data_from == "20newsgroup": config.test_batch_size = 26 config.max_docs_length = 1000 config.max_seq_length = 3 config.tree1 = np.array([22,3,4,5,6,7]) config.tree2 = np.array([23,9,10,11,12]) config.tree3 = np.array([24,13,14,15,16]) config.tree4 = np.array([25,8]) config.tree5 = np.array([26,10,18,19]) config.tree6 = np.array([27,21,2,17]) config.layer1 = np.array([22,23,24,25,26,27]) config.layer2 = np.array([3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]) config.save_dir = os.path.join(config.out_dir, "save") config.log_dir = os.path.join(config.out_dir, "log") if not os.path.exists(config.out_dir): # or os.path.isfile(config.out_dir): os.makedirs(config.out_dir) if not os.path.exists(config.save_dir): os.mkdir(config.save_dir) if not os.path.exists(config.log_dir): os.mkdir(config.log_dir) os.environ["CUDA_VISIBLE_DEVICES"]=config.gpu_ids m(config)
def main(): key_args = key_parser.parse_known_args()[0] print(key_args) args = all_parser.parse_args() args.name = args.name.replace("-", "_") if args.mode == "train_eval": assert args.data_name is not None assert args.hparams_path is not None run_id, save_dir = prepare_env(args) # set distribution env if torch.cuda.is_available(): if args.is_dist: hvd.init() args.local_rank = hvd.local_rank() args.world_size = hvd.size() print('local rank:', args.local_rank, 'world size', args.world_size) if args.local_rank != 0: args.main_process = False torch.cuda.set_device(args.local_rank) seed = args.local_rank else: torch.cuda.set_device('cuda:%d' % int(args.gpu_id)) seed = args.seed # seed = args.gpu_id torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) # numpy pseudo-random generator random.seed(seed) # `python` built-in pseudo-random generator else: raise RuntimeError('gpu is not available') # os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id if args.run_id is None: # hparams = edict(json.loads(open(args.hparams_path, "r").read())) hparams = json.loads(open(args.hparams_path, "r").read()) if args.main_process: dump_src(save_dir) dump_env(vars(args), save_dir, "args.json") dump_env(hparams, save_dir, "hparams.json") else: args, hparams = load_saved_env( args, save_dir) # TODO some process may not have $savedir m(args, str(save_dir), hparams=hparams)
def main(job_id, params): from main import main as m with file("config.json") as fin: params_ = json.load(fin) params['experiment_name'] = params_['experiment-name'] params['dataset'] = params_['dataset'] return m(job_id, params)
def main(_): config = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = config.gpu m(config)
def main(_): config = flags.FLAGS config.out_dir = os.path.join(config.out_base_dir, config.model_name, str(config.run_id).zfill(2)) m(config)
def main(_): config = flags.FLAGS os.environ["CUDA_VISIBLE_DEVICES"] = str(config.gpu) m(config)
def main(_): # assert (config.clftype=="") & (not config.model_name.endswith("flat")) if config.debug: #config.mode = "check" config.num_batches = 100 config.log_period = 1 config.save_period = 1 config.eval_period = 1 config.batch_size = 2 config.val_num_batches = 3 #print(config.test_batch_size) if config.model_name.endswith("flat"): if config.data_from == "reuters": config.clftype = "flat" config.eval_layers = False config.eval_trees = False if config.data_from == "reuters": config.fn_classes = 18 if config.data_from == "20newsgroup": config.fn_classes = 20 if config.data_from == "ice": config.fn_classes = 645 config.learning_rate = 0.001 config.thred = 0.053 else: if config.data_from == "reuters": config.hn_classes = 21 if config.data_from == "ice": config.hn_classes = 648 if config.data_from == "20newsgroup": config.hn_classes = 29 if config.data_from == "reuters": config.max_docs_length = 818 config.tree1 = np.array([2, 3, 4, 5, 6, 7, 8]) config.tree2 = np.array([9, 10, 11, 12, 13, 14, 15]) config.tree3 = np.array([16, 17, 18, 19]) config.layer1 = np.array([2, 9, 16]) config.layer2 = np.array([3, 4, 10, 11, 17, 19]) config.layer3 = np.array([5, 6, 7, 8, 12, 13, 14, 15, 18]) if config.data_from == "20newsgroup": if config.mode == "train": config.val_num_batches = 3 config.EOS = 28 config.test_batch_size = 100 config.max_docs_length = 1000 config.max_seq_length = 2 config.tree1 = np.array([22, 3, 4, 5, 6, 7]) config.tree2 = np.array([23, 9, 10, 11, 12]) config.tree3 = np.array([24, 13, 14, 15, 16]) config.tree4 = np.array([25, 8]) config.tree5 = np.array([26, 10, 18, 19]) config.tree6 = np.array([27, 21, 2, 17]) config.layer1 = np.array([22, 23, 24, 25, 26, 27]) config.layer2 = np.array([ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 ]) if config.data_from == "ice": if config.mode == "train": config.val_num_batches = 3 config.EOS = 647 config.batch_size = 600 config.test_batch_size = 600 config.max_docs_length = 48 config.max_seq_length = 8 config.eval_trees = False config.eval_layers = False config.num_batches = 80000 # define tree1/tree2/layer1/layer2 config.out_dir = os.path.join("../data/out", config.out_dir) config.save_dir = os.path.join(config.out_dir, "save") config.log_dir = os.path.join(config.out_dir, "log") if not os.path.exists( config.out_dir): # or os.path.isfile(config.out_dir): os.makedirs(config.out_dir) if not os.path.exists(config.save_dir): os.mkdir(config.save_dir) if not os.path.exists(config.log_dir): os.mkdir(config.log_dir) os.environ["CUDA_VISIBLE_DEVICES"] = config.gpu_ids m(config)
def main(_): config = flags.FLAGS # 위와 같이 정의된 값들은 flags.FLAGS 를 통해서 어디에서든지 호출하여 사용 os.environ["CUDA_VISIBLE_DEVICES"] = str(config.gpu) m(config)
def main(_): print(argv) config = flags.FLAGS m(config)