class Hyperparameters: INPUT_LAYER = 43 HIDDEN_LAYER = 75 #Modify?? OUTPUT_LAYER = 3 NUM_EPOCHS = 10000 #NUM_EPOCHS = 1 BATCH_NUMBER = 240 LEARNING_RATE = 0.1 VALIDATION_NUMBER = 30 TEST_NUMBER = 30 HYP = Hyperparameters() set_maker = SM() pbfilename = "GraphV5/GRAPHS/GraphV5_frozen.pb" file_name = "sen_data/inhale/61.wav" prediction_dictionary = {0: "inhale", 1: "exhale", 2: "unknown"} with tf.gfile.GFile(pbfilename, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) with tf.Graph().as_default() as graph: tf.import_graph_def(graph_def, input_map=None, return_elements=None, name="") input = graph.get_tensor_by_name("placeholders/input_placeholder:0") output = graph.get_tensor_by_name("prediction_and_loss/output:0")
NUM_EPOCHS = 10001 #NUM_EPOCHS = 1 BATCH_NUMBER = 340 LEARNING_RATE = 0.1 VALIDATION_NUMBER = 30 TEST_NUMBER = 30 class Information: INPUT_DIMENSIONS = 43 INPUT_TIME_DIV = 0.125 INPUT_SECTORS = 8 SAMPLE_RATE = 4096 set_maker = SM() HYP = Hyperparameters() prediction_dictionary = {0: "inhale", 1: "exhale", 2: "unknown"} W_In = tf.Variable( tf.random_normal(shape=[HYP.INPUT_LAYER, HYP.HIDDEN_LAYER], stddev=0.1, mean=0), name="W_In") #note: this used to have a mean of zero, so check that W_Hidd = tf.Variable(tf.random_normal( shape=[HYP.HIDDEN_LAYER, HYP.HIDDEN_LAYER], stddev=0.1, mean=0), name="W_Hidd") W_Out = tf.Variable(tf.random_normal( shape=[HYP.HIDDEN_LAYER, HYP.OUTPUT_LAYER], stddev=0.1, mean=0), name="W_Out")