Exemplo n.º 1
0
 def _vectorize(self, strings, method='first'):
     method = method.lower()
     if method not in ['first', 'last', 'mean', 'word']:
         raise ValueError(
             "method not supported, only support 'first', 'last', 'mean' and 'word'"
         )
     input_ids, input_masks, _, s_tokens = bert_tokenization(
         self._tokenizer, strings)
     v = self._sess.run(
         self._vectorizer,
         feed_dict={
             self._X: input_ids,
             self._input_masks: input_masks
         },
     )
     if method == 'first':
         v = v[:, 0]
     elif method == 'last':
         v = v[:, -1]
     elif method == 'mean':
         v = np.mean(v, axis=1)
     else:
         v = [
             merge_sentencepiece_tokens(
                 list(zip(s_tokens[i], v[i][:len(s_tokens[i])])),
                 weighted=False,
                 vectorize=True,
             ) for i in range(len(v))
         ]
     return v
Exemplo n.º 2
0
    def _translate(self, strings, beam_search=True):
        input_ids, input_masks, input_segments, _ = bert_tokenization(
            self._tokenizer, strings, cleaning=translation_textcleaning)
        if beam_search:
            output = self._beam
        else:
            output = self._greedy
        p = sess.run(
            output,
            feed_dict={
                model.X: batch_x,
                model.input_masks: batch_mask,
                model.segment_ids: batch_segment,
            },
        )

        result = []
        for output in p:
            output = [i for i in output if i > 1]
            output = self._tokenizer.convert_ids_to_tokens(output)
            output = [(t, 1) for t in output]
            output = merge_wordpiece_tokens(output)
            output = [t[0] for t in output]
            results.append(' '.join(output))
        return result
Exemplo n.º 3
0
 def _vectorize(self, strings, method='first'):
     method = method.lower()
     if method not in ['first', 'last', 'mean', 'word']:
         raise ValueError(
             "method not supported, only support 'first', 'last', 'mean' and 'word'"
         )
     input_ids, input_masks, _, s_tokens = bert_tokenization(
         self._tokenizer, strings)
     r = self._execute(
         inputs=[input_ids, input_masks],
         input_labels=['Placeholder', 'Placeholder_1'],
         output_labels=['vectorizer'],
     )
     v = r['vectorizer']
     if method == 'first':
         v = v[:, 0]
     elif method == 'last':
         v = v[:, -1]
     elif method == 'mean':
         v = np.mean(v, axis=1)
     else:
         v = [
             merge_sentencepiece_tokens(
                 list(zip(s_tokens[i], v[i][:len(s_tokens[i])])),
                 weighted=False,
                 vectorize=True,
             ) for i in range(len(v))
         ]
     return v
Exemplo n.º 4
0
    def vectorize(self, strings):

        """
        Vectorize string inputs using bert attention.

        Parameters
        ----------
        strings : str / list of str

        Returns
        -------
        array: vectorized strings
        """

        if isinstance(strings, list):
            if not isinstance(strings[0], str):
                raise ValueError('input must be a list of strings or a string')
        else:
            if not isinstance(strings, str):
                raise ValueError('input must be a list of strings or a string')
        if isinstance(strings, str):
            strings = [strings]

        batch_x, _, _, _ = bert_tokenization(
            self._tokenizer, strings, cls = self._cls, sep = self._sep
        )
        return self._sess.run(self.logits, feed_dict = {self.X: batch_x})
Exemplo n.º 5
0
    def vectorize(self, strings: List[str]):

        """
        Vectorize string inputs using bert attention.

        Parameters
        ----------
        strings : List[str]

        Returns
        -------
        result: np.array
        """

        batch_x, batch_masks, batch_segments, _ = bert_tokenization(
            self._tokenizer, strings
        )
        return self._sess.run(
            self.logits,
            feed_dict = {
                self.X: batch_x,
                self.MASK: batch_masks,
                self.segment_ids: batch_segments,
            },
        )
Exemplo n.º 6
0
 def _attention(self, strings):
     batch_x, _, _, s_tokens = bert_tokenization(
         self._tokenizer, strings, cls = self._cls, sep = self._sep
     )
     maxlen = max([len(s) for s in s_tokens])
     s_tokens = padding_sequence(s_tokens, maxlen, pad_int = self._sep)
     attentions = self._sess.run(self.attns, feed_dict = {self.X: batch_x})
     return attentions, s_tokens
Exemplo n.º 7
0
    def _classify(self, strings):
        input_ids, input_masks, _, _ = bert_tokenization(
            self._tokenizer, strings
        )

        return self._sess.run(
            self._softmax,
            feed_dict = {self._X: input_ids, self._input_masks: input_masks},
        )
Exemplo n.º 8
0
 def _classify(self, strings):
     input_ids, input_masks, _, _ = bert_tokenization(
         self._tokenizer, strings)
     r = self._execute(
         inputs=[input_ids, input_masks],
         input_labels=['Placeholder', 'Placeholder_1'],
         output_labels=['logits'],
     )
     return softmax(r['logits'], axis=-1)
Exemplo n.º 9
0
 def _attention(self, strings):
     batch_x, batch_masks, _, s_tokens = bert_tokenization(
         self._tokenizer, strings
     )
     maxlen = max([len(s) for s in s_tokens])
     s_tokens = padding_sequence(s_tokens, maxlen, pad_int = '[SEP]')
     attentions = self._sess.run(
         self.attns, feed_dict = {self.X: batch_x, self.MASK: batch_masks}
     )
     return attentions, s_tokens, batch_masks
Exemplo n.º 10
0
 def _classify(self, strings):
     input_ids, _, _, _ = bert_tokenization(self._tokenizer, strings)
     input_ids = tf.keras.preprocessing.sequence.pad_sequences(
         input_ids, padding='post', maxlen=self._maxlen)
     r = self._execute(
         inputs=[input_ids],
         input_labels=['Placeholder'],
         output_labels=['logits'],
     )
     return softmax(r['logits'], axis=-1)
Exemplo n.º 11
0
 def _base(self, strings_left, strings_right):
     input_ids_left, input_masks_left, _, _ = bert_tokenization(
         self._tokenizer, strings_left)
     input_ids_right, input_masks_right, _, _ = bert_tokenization(
         self._tokenizer, strings_right)
     r = self._execute(
         inputs=[
             input_ids_left,
             input_masks_left,
             input_ids_right,
             input_masks_right,
         ],
         input_labels=[
             'Placeholder',
             'Placeholder_1',
             'Placeholder_2',
             'Placeholder_3',
         ],
         output_labels=['logits'],
     )
     return softmax(r['logits'], axis=-1)
Exemplo n.º 12
0
 def _classify(self, strings):
     input_ids, input_masks, _, _ = bert_tokenization(
         self._tokenizer, strings, socialmedia=self._socialmedia
     )
     r = self._execute(
         inputs=[input_ids, input_masks],
         input_labels=['Placeholder'],
         output_labels=['logits'],
     )
     if self._multilabels:
         return sigmoid(r['logits'])
     else:
         return softmax(r['logits'], axis=-1)
Exemplo n.º 13
0
    def vectorize(self, strings: List[str], method: str = 'first'):
        """
        vectorize list of strings.

        Parameters
        ----------
        strings: List[str]
        method : str, optional (default='first')
            Vectorization layer supported. Allowed values:

            * ``'last'`` - vector from last sequence.
            * ``'first'`` - vector from first sequence.
            * ``'mean'`` - average vectors from all sequences.
            * ``'word'`` - average vectors based on tokens.

        Returns
        -------
        result: np.array
        """
        method = method.lower()
        if method not in ['first', 'last', 'mean', 'word']:
            raise ValueError(
                "method not supported, only support 'first', 'last', 'mean' and 'word'"
            )
        input_ids, input_masks, _, s_tokens = bert_tokenization(
            self._tokenizer, strings
        )
        r = self._execute(
            inputs=[input_ids, input_masks],
            input_labels=['Placeholder', 'Placeholder_1'],
            output_labels=['vectorizer'],
        )
        v = r['vectorizer']
        if method == 'first':
            v = v[:, 0]
        elif method == 'last':
            v = v[:, -1]
        elif method == 'mean':
            v = np.mean(v, axis=1)
        else:
            v = [
                merge_sentencepiece_tokens(
                    list(zip(s_tokens[i], v[i][: len(s_tokens[i])])),
                    weighted=False,
                    vectorize=True,
                )
                for i in range(len(v))
            ]
        return v
Exemplo n.º 14
0
 def _paraphrase(self, strings):
     batch_x, input_masks, input_segments, _ = bert_tokenization(
         self._tokenizer, strings)
     outputs = self._sess.run(
         self._logits,
         feed_dict={
             self._X: batch_x,
             self._segment_ids: input_segments,
             self._input_masks: input_masks,
         },
     )[:, 0, :].tolist()
     results = []
     for output in outputs:
         output = [i for i in output if i > 0]
         output = self._tokenizer.convert_ids_to_tokens(output)
         output = [(t, 1) for t in output]
         output = merge_sentencepiece_tokens(output)
         output = [t[0] for t in output]
         results.append(' '.join(output))
     return results
Exemplo n.º 15
0
    def vectorize(self, strings: List[str]):
        """
        Vectorize list of strings.

        Parameters
        ----------
        strings : List[str]

        Returns
        -------
        result: np.array
        """
        input_ids, input_masks, _, _ = bert_tokenization(
            self._tokenizer, strings)
        r = self._execute(
            inputs=[input_ids, input_masks],
            input_labels=['Placeholder', 'Placeholder_1'],
            output_labels=['bert/summary'],
        )
        return r['bert/summary']
Exemplo n.º 16
0
    def vectorize(self, strings: List[str]):
        """
        Vectorize list of strings.

        Parameters
        ----------
        strings : List[str]

        Returns
        -------
        result: np.array
        """
        input_ids, input_masks, segment_ids, _ = bert_tokenization(
            self._tokenizer, strings)
        segment_ids = np.array(segment_ids) + 1
        return self._sess.run(
            self._vectorizer,
            feed_dict={
                self._X: input_ids,
                self._segment_ids: segment_ids,
                self._input_masks: input_masks,
            },
        )
Exemplo n.º 17
0
    def _predict_words(self, string, method, visualization, add_neutral=False):
        method = method.lower()
        if method not in ['last', 'first', 'mean']:
            raise ValueError(
                "method not supported, only support 'last', 'first' and 'mean'"
            )
        if add_neutral:
            label = self._label + ['neutral']
        else:
            label = self._label

        batch_x, batch_mask, _, s_tokens = bert_tokenization(
            self._tokenizer, [string])
        result, attentions, words = self._sess.run(
            [self._softmax, self._attns, self._softmax_seq],
            feed_dict={
                self._X: batch_x,
                self._input_masks: batch_mask
            },
        )
        if method == 'first':
            cls_attn = list(attentions[0].values())[0][:, :, 0, :]

        if method == 'last':
            cls_attn = list(attentions[-1].values())[0][:, :, 0, :]

        if method == 'mean':
            combined_attentions = []
            for a in attentions:
                combined_attentions.append(list(a.values())[0])
            cls_attn = np.mean(combined_attentions, axis=0).mean(axis=2)

        cls_attn = np.mean(cls_attn, axis=1)
        total_weights = np.sum(cls_attn, axis=-1, keepdims=True)
        attn = cls_attn / total_weights
        words = words[0]

        if add_neutral:
            result = neutral(result)
            words = neutral(words)

        result = result[0]
        weights = []
        merged = merge_sentencepiece_tokens(list(zip(s_tokens[0], attn[0])))
        for i in range(words.shape[1]):
            m = merge_sentencepiece_tokens(list(zip(s_tokens[0], words[:, i])),
                                           weighted=False)
            _, weight = zip(*m)
            weights.append(weight)
        w, a = zip(*merged)
        words = np.array(weights).T
        distribution_words = words[:, np.argmax(words.sum(axis=0))]
        y_histogram, x_histogram = np.histogram(distribution_words,
                                                bins=np.arange(0, 1, 0.05))
        y_histogram = y_histogram / y_histogram.sum()
        x_attention = np.arange(len(w))
        left, right = np.unique(np.argmax(words, axis=1), return_counts=True)
        left = left.tolist()
        y_barplot = []
        for i in range(len(label)):
            if i not in left:
                y_barplot.append(i)
            else:
                y_barplot.append(right[left.index(i)])

        dict_result = {label[i]: result[i] for i in range(len(result))}
        dict_result['alphas'] = {w: a[no] for no, w in enumerate(w)}
        dict_result['word'] = {w: words[no] for no, w in enumerate(w)}
        dict_result['histogram'] = {'x': x_histogram, 'y': y_histogram}
        dict_result['attention'] = {'x': x_attention, 'y': np.array(a)}
        dict_result['barplot'] = {'x': label, 'y': y_barplot}
        dict_result['class_name'] = self._class_name

        if visualization:
            render_dict[self._class_name](dict_result)
        else:
            return dict_result
Exemplo n.º 18
0
    def predict_words(self,
                      string: str,
                      method: str = 'last',
                      visualization: bool = True):
        """
        classify words.

        Parameters
        ----------
        string : str
        method : str, optional (default='last')
            Attention layer supported. Allowed values:

            * ``'last'`` - attention from last layer.
            * ``'first'`` - attention from first layer.
            * ``'mean'`` - average attentions from all layers.
        visualization: bool, optional (default=True)
            If True, it will open the visualization dashboard.

        Returns
        -------
        dictionary: results
        """

        method = method.lower()
        if method not in ['last', 'first', 'mean']:
            raise ValueError(
                "method not supported, only support 'last', 'first' and 'mean'"
            )

        batch_x, input_masks, _, s_tokens = bert_tokenization(
            self._tokenizer, [string])
        result, attentions, words = self._sess.run(
            [self._sigmoid, self._attns, self._sigmoid_seq],
            feed_dict={
                self._X: batch_x,
                self._input_masks: input_masks
            },
        )
        if method == 'first':
            cls_attn = list(attentions[0].values())[0][:, :, 0, :]

        if method == 'last':
            cls_attn = list(attentions[-1].values())[0][:, :, 0, :]

        if method == 'mean':
            combined_attentions = []
            for a in attentions:
                combined_attentions.append(list(a.values())[0])
            cls_attn = np.mean(combined_attentions, axis=0).mean(axis=2)

        cls_attn = np.mean(cls_attn, axis=1)
        total_weights = np.sum(cls_attn, axis=-1, keepdims=True)
        attn = cls_attn / total_weights
        result = result[0]
        words = words[0]
        weights = []
        merged = merge_sentencepiece_tokens(list(zip(s_tokens[0], attn[0])))
        for i in range(words.shape[1]):
            m = merge_sentencepiece_tokens(list(zip(s_tokens[0], words[:, i])),
                                           weighted=False)
            _, weight = zip(*m)
            weights.append(weight)
        w, a = zip(*merged)
        words = np.array(weights).T
        distribution_words = words[:, np.argmax(words.sum(axis=0))]
        y_histogram, x_histogram = np.histogram(distribution_words,
                                                bins=np.arange(0, 1, 0.05))
        y_histogram = y_histogram / y_histogram.sum()
        x_attention = np.arange(len(w))
        left, right = np.unique(np.argmax(words, axis=1), return_counts=True)
        left = left.tolist()
        y_barplot = []
        for i in range(len(self._label)):
            if i not in left:
                y_barplot.append(i)
            else:
                y_barplot.append(right[left.index(i)])

        dict_result = {self._label[i]: result[i] for i in range(len(result))}
        dict_result['alphas'] = {w: a[no] for no, w in enumerate(w)}
        dict_result['word'] = {w: words[no] for no, w in enumerate(w)}
        dict_result['histogram'] = {'x': x_histogram, 'y': y_histogram}
        dict_result['attention'] = {'x': x_attention, 'y': np.array(a)}
        dict_result['barplot'] = {'x': self._label, 'y': y_barplot}
        dict_result['class_name'] = self._class_name
        if visualization:
            _render_toxic(dict_result)
        else:
            return dict_result
Exemplo n.º 19
0
    def _predict_words(
        self,
        string,
        method,
        visualization,
        add_neutral=False,
        bins_size=0.05,
        **kwargs,
    ):
        method = method.lower()
        if method not in ['last', 'first', 'mean']:
            raise ValueError(
                "method not supported, only support 'last', 'first' and 'mean'"
            )
        if add_neutral and not self._multilabels:
            label = self._label + ['neutral']
        else:
            label = self._label

        input_ids, input_masks, _, s_tokens = bert_tokenization(
            self._tokenizer, [string]
        )
        r = self._execute(
            inputs=[input_ids, input_masks],
            input_labels=['Placeholder', 'Placeholder_1'],
            output_labels=['logits', 'attention', 'logits_seq'],
        )
        if self._multilabels:
            result = sigmoid(r['logits'])
            words = sigmoid(r['logits_seq'])
        else:
            result = softmax(r['logits'], axis=-1)
            words = softmax(r['logits_seq'], axis=-1)

        attentions = r['attention']

        if method == 'first':
            cls_attn = list(attentions[0].values())[0][:, :, 0, :]

        if method == 'last':
            cls_attn = list(attentions[-1].values())[0][:, :, 0, :]

        if method == 'mean':
            combined_attentions = []
            for a in attentions:
                combined_attentions.append(list(a.values())[0])
            cls_attn = np.mean(combined_attentions, axis=0).mean(axis=2)

        cls_attn = np.mean(cls_attn, axis=1)
        total_weights = np.sum(cls_attn, axis=-1, keepdims=True)
        attn = cls_attn / total_weights
        words = words[0]

        if add_neutral and not self._multilabels:
            result = neutral(result)
            words = neutral(words)

        result = result[0]
        weights = []
        merged = merge_sentencepiece_tokens(list(zip(s_tokens[0], attn[0])))
        for i in range(words.shape[1]):
            m = merge_sentencepiece_tokens(
                list(zip(s_tokens[0], words[:, i])), weighted=False
            )
            _, weight = zip(*m)
            weights.append(weight)
        w, a = zip(*merged)
        words = np.array(weights).T
        distribution_words = words[:, np.argmax(words.sum(axis=0))]
        y_histogram, x_histogram = np.histogram(
            distribution_words, bins=np.arange(0, 1 + bins_size, bins_size)
        )
        y_histogram = y_histogram / y_histogram.sum()
        x_attention = np.arange(len(w))
        left, right = np.unique(
            np.argmax(words, axis=1), return_counts=True
        )
        left = left.tolist()
        y_barplot = []
        for i in range(len(label)):
            if i not in left:
                y_barplot.append(i)
            else:
                y_barplot.append(right[left.index(i)])

        dict_result = {label[i]: result[i] for i in range(len(result))}
        dict_result['alphas'] = {w: a[no] for no, w in enumerate(w)}
        dict_result['word'] = {w: words[no] for no, w in enumerate(w)}
        dict_result['histogram'] = {'x': x_histogram, 'y': y_histogram}
        dict_result['attention'] = {'x': x_attention, 'y': np.array(a)}
        dict_result['barplot'] = {'x': label, 'y': y_barplot}
        dict_result['module'] = self._module

        if visualization:
            render_dict[self._module](dict_result, **kwargs)
        else:
            return dict_result