Exemplo n.º 1
0
def computeDiameter(imIn, dir, scale=(1.0, 1.0), grid=mamba.DEFAULT_GRID):
    """
    Computes the diameter (diametral variation) of binary image 'imIn' in 
    direction 'dir'. 'scale' is a tuple defining the horizontal and vertical
    scale factors (default is 1.0).
    
    Beware, if the input image 'imIn' is not a binary image, the function raises
    an error.
    """
    
    if imIn.getDepth() != 1:
        mamba.raiseExceptionOnError(core.MB_ERR_BAD_DEPTH)
    if dir == 0:
        return 0.0
    dir = ((dir - 1)%(mamba.gridNeighbors(grid)//2)) +1
    imWrk = mamba.imageMb(imIn)
    mamba.copy(imIn, imWrk)
    mamba.diffNeighbor(imIn, imWrk, 1<<dir, grid=grid)
    if grid == mamba.HEXAGONAL:
        l = scale[1]
        if dir != 2:
            l = 2*l*scale[0]/math.sqrt(scale[0]*scale[0] + 4*scale[1]*scale[1])
    else:
        if dir == 1:
            l = scale[0]
        elif dir == 3:
            l = scale[1]
        else:
            l = scale[0]*scale[1]/math.sqrt(scale[0]*scale[0] + scale[1]*scale[1])
    l = l*mamba.computeVolume(imWrk)
    return l
Exemplo n.º 2
0
def computeDiameter(imIn, dir, scale=(1.0, 1.0), grid=mamba.DEFAULT_GRID):
    """
    Computes the diameter (diametral variation) of binary image 'imIn' in 
    direction 'dir'. 'scale' is a tuple defining the horizontal and vertical
    scale factors (default is 1.0).
    
    Beware, if the input image 'imIn' is not a binary image, the function raises
    an error.
    """

    if imIn.getDepth() != 1:
        mamba.raiseExceptionOnError(core.MB_ERR_BAD_DEPTH)
    if dir == 0:
        return 0.0
    dir = ((dir - 1) % (mamba.gridNeighbors(grid) // 2)) + 1
    imWrk = mamba.imageMb(imIn)
    mamba.copy(imIn, imWrk)
    mamba.diffNeighbor(imIn, imWrk, 1 << dir, grid=grid)
    if grid == mamba.HEXAGONAL:
        l = scale[1]
        if dir != 2:
            l = 2 * l * scale[0] / math.sqrt(scale[0] * scale[0] +
                                             4 * scale[1] * scale[1])
    else:
        if dir == 1:
            l = scale[0]
        elif dir == 3:
            l = scale[1]
        else:
            l = scale[0] * scale[1] / math.sqrt(scale[0] * scale[0] +
                                                scale[1] * scale[1])
    l = l * mamba.computeVolume(imWrk)
    return l
Exemplo n.º 3
0
def hitOrMiss3D(imIn, imOut, dse, edge=mamba.EMPTY):
    """
    Performs a binary Hit-or-miss operation on 3D image 'imIn' using the 
    doubleStructuringElement3D 'dse'. Result is put in 'imOut'.
    
    WARNING! 'imIn' and 'imOut' must be different images.
    """

    (width, height, length) = imIn.getSize()
    depth = imIn.getDepth()
    if depth != 1:
        mamba.raiseExceptionOnError(core.MB_ERR_BAD_DEPTH)
    if length != len(imOut):
        mamba.raiseExceptionOnError(core.MB_ERR_BAD_SIZE)
    zext = dse.grid.getZExtension()
    imWrk = m3D.image3DMb(width, height, length + zext * 2, depth)

    # Border handling
    imWrk.reset()
    m3D.copy3D(imIn, imWrk, firstPlaneOut=1)
    if edge == mamba.FILLED:
        m3D.negate3D(imWrk, imWrk)
        for i in range(zext):
            imWrk[i].reset()
            imWrk[length + zext * 2 - 1 - i].reset()
        dse = dse.flip()

    # Central point
    if dse.se1.hasZero():
        m3D.copy3D(imWrk, imOut, firstPlaneIn=1)
    else:
        if dse.se0.hasZero():
            for i in range(length):
                mamba.negate(imWrk[i + 1], imOut[i])
        else:
            imOut.fill(1)

    # Other directions
    dirs = m3D.getDirections3D(dse.getGrid(), True)
    dirs0 = dse.se0.getDirections()
    dirs1 = dse.se1.getDirections()
    grid2D = dse.getGrid().get2DGrid()
    for d in dirs:
        if d in dirs1:
            for i in range(length):
                (planeOffset, dc) = dse.getGrid().convertFromDir(d, i)
                mamba.infNeighbor(imWrk[i + 1 + planeOffset],
                                  imOut[i],
                                  1 << dc,
                                  grid=grid2D,
                                  edge=edge)
        elif d in dirs0:
            for i in range(length):
                (planeOffset, dc) = dse.getGrid().convertFromDir(d, i)
                mamba.diffNeighbor(imWrk[i + 1 + planeOffset],
                                   imOut[i],
                                   1 << dc,
                                   grid=grid2D,
                                   edge=edge)
Exemplo n.º 4
0
def hitOrMiss3D(imIn, imOut, dse, edge=mamba.EMPTY):
    """
    Performs a binary Hit-or-miss operation on 3D image 'imIn' using the 
    doubleStructuringElement3D 'dse'. Result is put in 'imOut'.
    
    WARNING! 'imIn' and 'imOut' must be different images.
    """
    
    (width,height,length) = imIn.getSize()
    depth = imIn.getDepth()
    if depth!=1:
        mamba.raiseExceptionOnError(core.MB_ERR_BAD_DEPTH)
    if length!=len(imOut):
        mamba.raiseExceptionOnError(core.MB_ERR_BAD_SIZE)
    zext = dse.grid.getZExtension()
    imWrk = m3D.image3DMb(width, height, length+zext*2, depth)
    
    # Border handling
    imWrk.reset()
    m3D.copy3D(imIn, imWrk, firstPlaneOut=1)
    if edge==mamba.FILLED:
        m3D.negate3D(imWrk, imWrk)
        for i in range(zext):
            imWrk[i].reset()
            imWrk[length+zext*2-1-i].reset()
        dse = dse.flip()

    # Central point
    if dse.se1.hasZero():
        m3D.copy3D(imWrk, imOut, firstPlaneIn=1)
    else:
        if dse.se0.hasZero():
            for i in range(length):
                mamba.negate(imWrk[i+1], imOut[i])
        else:
            imOut.fill(1)

    # Other directions
    dirs = m3D.getDirections3D(dse.getGrid(), True)
    dirs0 = dse.se0.getDirections()
    dirs1 = dse.se1.getDirections()
    grid2D = dse.getGrid().get2DGrid()
    for d in dirs:
        if d in dirs1:
            for i in range(length):
                (planeOffset, dc) = dse.getGrid().convertFromDir(d,i)
                mamba.infNeighbor(imWrk[i+1+planeOffset], imOut[i], 1<<dc, grid=grid2D, edge=edge)
        elif d in dirs0:
            for i in range(length):
                (planeOffset, dc) = dse.getGrid().convertFromDir(d,i)
                mamba.diffNeighbor(imWrk[i+1+planeOffset], imOut[i], 1<<dc, grid=grid2D, edge=edge)
Exemplo n.º 5
0
def diameterLabelling(imIn, imOut, dir, grid=mamba.DEFAULT_GRID):
    """
    Labels each connected component of the binary image 'imIn' with its diameter in 
    direction 'dir'. The labelled image is stored in the 32-bit image 'imOut'.
    If 'imIn' is a 8-bit or 32-bit image, this function works too. However, the
    0-valued connected components are labelled with 0.
    This procedure works on hexagonal or square grid.
    'dir' can be any strictly positive integer value.
    """
    
    imWrk1 = mamba.imageMb(imIn, 1)
    imWrk2 = mamba.imageMb(imIn)
    
    ed = 1 << ((dir - 1)%(mamba.gridNeighbors(grid)//2)) +1
    if imIn.getDepth() == 1:
        mamba.copy(imIn, imWrk1)
        mamba.diffNeighbor(imIn, imWrk1, ed, grid=grid)
    else:
        mamba.nonEqualNeighbors(imIn, imWrk2, ed, grid=grid, edge= mamba.EMPTY)
        mamba.threshold(imWrk2, imWrk1, 1, mamba.computeMaxRange(imWrk2)[1])
    # They are used for the labelling.
    measureLabelling(imIn, imWrk1, imOut)
Exemplo n.º 6
0
def diameterLabelling(imIn, imOut, dir, grid=mamba.DEFAULT_GRID):
    """
    Labels each connected component of the binary image 'imIn' with its diameter in 
    direction 'dir'. The labelled image is stored in the 32-bit image 'imOut'.
    If 'imIn' is a 8-bit or 32-bit image, this function works too. However, the
    0-valued connected components are labelled with 0.
    This procedure works on hexagonal or square grid.
    'dir' can be any strictly positive integer value.
    """

    imWrk1 = mamba.imageMb(imIn, 1)
    imWrk2 = mamba.imageMb(imIn)

    ed = 1 << ((dir - 1) % (mamba.gridNeighbors(grid) // 2)) + 1
    if imIn.getDepth() == 1:
        mamba.copy(imIn, imWrk1)
        mamba.diffNeighbor(imIn, imWrk1, ed, grid=grid)
    else:
        mamba.nonEqualNeighbors(imIn, imWrk2, ed, grid=grid, edge=mamba.EMPTY)
        mamba.threshold(imWrk2, imWrk1, 1, mamba.computeMaxRange(imWrk2)[1])
    # They are used for the labelling.
    measureLabelling(imIn, imWrk1, imOut)