def traj_error(x):
        ship_it = ship()
        df = df_main

        coef__ = np.array(
            [np.asarray(x[:10]),
             np.asarray(x[10:25]),
             np.asarray(x[25:40])])
        # print(coef__)
        u, v, r, hdg = df.loc[df.index[0], 'u'], df.loc[
            df.index[0], 'v'], df.loc[df.index[0], 'r'], df.loc[df.index[0],
                                                                'hdg']
        ship_it_model = ship_model(df.loc[df.index[0], 'u_dot'],
                                   df.loc[df.index[0], 'v_dot'],
                                   df.loc[df.index[0],
                                          'r_dot'], ship_it, coef__)
        df_sim = pd.DataFrame([])
        for i in df[:-1].index:
            if i % traj_len == 0:
                u, v, r, hdg = df.loc[i, 'u'], df.loc[i, 'v'], df.loc[
                    i, 'r'], df.loc[i, 'hdg']
            u, v, r, hdg, delta_x_0, delta_y_0, delta_r_0, u_dot, v_dot, r_dot = ship_it_model.manoeuvre_model_rt_evolution(
                u, v, r, hdg, df.loc[i, 'rpm_0'] / 600.,
                df.loc[i, 'rpm_1'] / 600., df.loc[i, 'rpm_2'] / 600.,
                df.loc[i, 'rsa_0'], df.loc[i, 'rsa_1'], df.loc[i, 'rsa_2'],
                df.loc[i, 'delta_time'])
            # print(u, v, r, hdg)

            df_temp = pd.DataFrame({
                'index_sim': [i + 1],
                'x_delta_sim': [delta_x_0],
                'y_delta_sim': [delta_y_0],
                'hdg_delta_sim': [delta_r_0]
            })
            df_sim = pd.concat([df_sim, df_temp], axis=0)

        df = pd.merge(df,
                      df_sim,
                      how='left',
                      left_on=df.index,
                      right_on='index_sim')

        df['x_real_sim'] = df.x_delta_sim.cumsum()
        df['y_real_sim'] = df.y_delta_sim.cumsum()
        df['psi_sim'] = df.hdg_delta_sim.cumsum()

        df['x_real'] = df.x.cumsum()
        df['y_real'] = df.y.cumsum()

        df['x_diff'] = abs(df.x_delta_sim - df.x)
        df['y_diff'] = abs(df.y_delta_sim - df.y)
        df['error'] = np.sqrt(df.x_diff**2 + df.y_diff**2)

        plt.plot(df.x_real.tolist()[:], df.y_real.tolist()[:])
        plt.plot(df.x_real_sim.tolist()[:], df.y_real_sim.tolist()[:])
        # plt.plot(df.traj_error)
        plt.show()
        # print(df)
        feature = df.error.cumsum().iloc[-1]
        # print(feature)
        # print(feature)

        del ship_it_model
        if feature == np.inf or math.isnan(feature):
            feature = 10000000000000000
        print(feature)
        del df
        return feature
]  #, (50.0, 50.0,225, 50)]#, (0.0, 50.,270.0, 150)]#,(-50.0, -50.,270.0, 250)]#,(-50.0, 0.,180.0, 300),(-50.0, 0.,180.0, 450)]#, (0.0, 0,290, 120)]#, (50., 100., 100)]#,(100., 100., 200),(100., 0., 300)]#], (0., 100., 180)]#, (0., 0., 190)]#, (20,70), (10, 150)]
end_input = 0
input_position = 0
t = 0
dt = 1.  #future noise
t_end = 520
pid_position_x = PID(P=0.6, I=0.0, D=25.)
pid_position_y = PID(P=0.6, I=0.0, D=25.)
pid_attitude = PID(P=.1, I=0., D=16.5)

# pid_position_x = PID(P=2.5, I=0.0, D=50.)
# pid_position_y = PID(P=2.5, I=0.0, D=50.)
# pid_attitude =   PID(P=.85, I=0.0, D=25.0)

# pid_attitude =   PID(P=.265, I=0.0, D=.9)
ship_model = ship_model(0, 0, 0, ship, coef_)
x, x_old = 0, 0
y, y_old = 0, 0
u, v, r, hdg = 0.0, 0, 0, 45
rpm_1, rpm_2 = 0, 0
input_ref = []
traj_x, traj_y, hdg_list = [], [], []
last_coordinate = [0, 0]

sign_attitude_control = 1

current_input_setting_attitude = 0

turbo_polyp = Turbo_Polyp(x, y, hdg)
t_polyp = 0.0
Exemplo n.º 3
0
def traj_error(x):
    ship_it = ship()

    ship_it.man_eng = ship_it.man_eng * x[0]
    ship_it.x_g = ship_it.x_g * x[1]
    ship_it.y_1, ship_it.y_2 = ship_it.y_1 * x[2], ship_it.y_2 * x[2]
    ship_it.I_e = ship_it.I_e * x[3]
    ship_it.Mass = ship_it.Mass * x[4]

    print(x)
    df = pd.read_csv('test_1_large_turbopolyp.csv', sep=',')[2200:]
    df = df.dropna()
    # df = df_main[1:]

    df.rpm_0 = df.rpm_0 / 600.0
    df.rpm_1 = df.rpm_1 / 600.0
    df.rpm_2 = df.rpm_2 / 600.0

    df['u_a_2'] = (1 - ship_it.w) * (
        (df.u + df.r * abs(ship_it.y_2)) * -1 * np.cos(np.deg2rad(df.rsa_2)) +
        (df.v + df.r * abs(ship_it.x_2)) * -1 * np.sin(np.deg2rad(df.rsa_2))
    )  #(1-ship.w)*
    df['u_a_1'] = (1 - ship_it.w) * (
        (df.u - df.r * abs(ship_it.y_1)) * -1 * np.cos(np.deg2rad(df.rsa_1)) +
        (-df.v - df.r * abs(ship_it.x_1)) * -1 * np.sin(np.deg2rad(df.rsa_1))
    )  #(1-ship.w)*
    df['u_a_0'] = (1 - ship_it.w) * (
        (df.u) * -1 * np.cos(np.deg2rad(df.rsa_0)) +
        ((-df.v + df.r * abs(ship_it.x_0)) * -1 * np.sin(np.deg2rad(df.rsa_0)))
    )  #(1-ship.w)*

    df['beta_2'] = np.rad2deg(
        np.arctan((df.u_a_2) / (0.7 * np.pi * df.rpm_2 * ship_it.D_p)))
    df['beta_2'] = df.beta_2.apply(lambda x: x + 360 if x < 0 else x)

    df['beta_1'] = np.rad2deg(
        np.arctan((df.u_a_1) / (0.7 * np.pi * df.rpm_1 * ship_it.D_p)))
    df['beta_1'] = df.beta_1.apply(lambda x: x + 360 if x < 0 else x)

    df['beta_0'] = np.rad2deg(
        np.arctan((df.u_a_0) / (0.7 * np.pi * df.rpm_0 * ship_it.D_p)))
    df['beta_0'] = df.beta_0.apply(lambda x: x + 360 if x < 0 else x)

    df['f_p_40_2'] = 1. * (
        (1 - ship_it.t) * ship_it.beta_coef(df.beta_2) * 0.5 * ship_it.rho *
        (((((1 - ship_it.w) * df.u_a_2)**2) +
          (0.7 * np.pi * df.rpm_2 * ship_it.D_p)**2)) * np.pi / 4 *
        ship_it.D_p**2)  #(1-df['t_21_phi'])*(1-df['t_20_phi'])*
    df['f_p_40_1'] = 1. * (
        (1 - ship_it.t) * ship_it.beta_coef(df.beta_1) * 0.5 * ship_it.rho *
        (((((1 - ship_it.w) * df.u_a_1)**2) +
          (0.7 * np.pi * df.rpm_1 * ship_it.D_p)**2)) * np.pi / 4 *
        ship_it.D_p**2)  #(1-df['t_12_phi'])*(1-df['t_10_phi'])*
    df['f_p_40_0'] = 1. * (
        (1 - ship_it.t) * ship_it.beta_coef(df.beta_0) * 0.5 * ship_it.rho *
        (((((1 - ship_it.w) * df.u_a_0)**2) +
          (0.7 * np.pi * df.rpm_0 * ship_it.D_p)**2)) * np.pi / 4 * ship_it.D_p
        **2)  #.rolling(20).mean()  #(1-df['t_02_phi'])*(1-df['t_01_phi'])*

    df = df[20:-7]

    u = df.u.to_numpy()[:, newaxis]
    v = df.v.to_numpy()[:, newaxis]
    r = df.r.to_numpy()[:, newaxis]

    u_a_2 = df.u_a_2.to_numpy()[:, newaxis]
    u_a_1 = df.u_a_1.to_numpy()[:, newaxis]
    u_a_0 = df.u_a_0.to_numpy()[:, newaxis]

    u_dot = df.u_dot.to_numpy()[:, newaxis]

    v_dot = df.v_dot.to_numpy()[:, newaxis]

    r_dot = df.r_dot.to_numpy()[:, newaxis]

    rsa_0 = df.rsa_0.to_numpy()[:, newaxis]
    rsa_1 = df.rsa_1.to_numpy()[:, newaxis]
    rsa_2 = df.rsa_2.to_numpy()[:, newaxis]

    f_p_40_0 = df.f_p_40_0.to_numpy()[:, newaxis]
    f_p_40_2 = df.f_p_40_2.to_numpy()[:, newaxis]
    f_p_40_1 = df.f_p_40_1.to_numpy()[:, newaxis]

    X = np.concatenate([
        u_dot,
        u,
        u * u,
        u * u * u,
        v * v,
        r * r,
        v * r,
        u * v * v,
        r * v * u,
        u * r * r,
    ],
                       axis=1)
    Y = np.concatenate([
        v_dot, v, v * v, u * v, u * r, u * u * r, u * u * v, v * v * v,
        r * r * r, r * r * v, v * v * r,
        abs(v) * v,
        abs(r) * v, r * abs(v),
        abs(r) * r
    ],
                       axis=1)  #, abs(v)*v, abs(r)*v, r*abs(v), abs(r)*r
    N = np.concatenate([
        r_dot,
        r,
        r * r,
        v * r,
        u * r,
        u * u * r,
        u * u * v,
        v * v * v,
        r * r * r,
        r * r * v,
        v * v * r,
        abs(v) * v,
        abs(r) * v,
        r * abs(v),
        abs(r) * r,
    ],
                       axis=1)

    y_x = ship_it.Mass * (u_dot - r * v) - 1.0 * (
        -np.cos(np.deg2rad(rsa_0)) * (f_p_40_0) - np.cos(np.deg2rad(rsa_1)) *
        (f_p_40_1) - np.cos(np.deg2rad(rsa_2)) * (f_p_40_2))
    y_y = ship_it.Mass * (v_dot + r * u) - 1.0 * (
        -np.sin(np.deg2rad(rsa_0)) * (f_p_40_0) - np.sin(np.deg2rad(rsa_1)) *
        (f_p_40_1) - np.sin(np.deg2rad(rsa_2)) *
        (f_p_40_2))  #np.sin(rsa_0)*abs(f_p_40_0)+np.sin(rsa_1)*abs(f_p_40_1)+
    y_r = ship_it.I_e * r_dot - 1 * (
        ship_it.x_0 * -1 * np.sin(np.deg2rad(rsa_0)) *
        (f_p_40_0) + ship_it.x_2 * -1 * np.sin(np.deg2rad(rsa_2)) *
        (f_p_40_2) + ship_it.x_1 * -1 * np.sin(np.deg2rad(rsa_1)) *
        (f_p_40_1) - ship_it.y_2 * -1 * np.cos(np.deg2rad(rsa_2)) *
        (f_p_40_2) - ship_it.y_1 * -1 * np.cos(np.deg2rad(rsa_1)) * (f_p_40_1))

    model = Ridge(fit_intercept=False)
    cv = RepeatedKFold(n_splits=5, n_repeats=10, random_state=25)
    grid = dict()
    grid['alpha'] = np.logspace(1.0, -4.0, num=10)
    search = GridSearchCV(model,
                          grid,
                          scoring='neg_mean_squared_error',
                          cv=cv,
                          n_jobs=-1)
    results_x = search.fit(X, y_x)
    one_mse_value = search.cv_results_['mean_test_score'][
        -1] - search.cv_results_['mean_test_score'].std()
    a = [
        i for i in range(len(search.cv_results_['mean_test_score']))
        if search.cv_results_['mean_test_score'][i] > one_mse_value
    ]
    # search.param_grid['alpha'][0][int(a[0])]
    clf_x = Ridge(alpha=search.param_grid['alpha'][int(a[0])])
    clf_x.fit(X, y_x)
    # clf.score(X, y_x)

    model = Ridge(fit_intercept=False)
    cv = RepeatedKFold(n_splits=5, n_repeats=10, random_state=25)
    grid = dict()
    grid['alpha'] = np.logspace(5.0, -4.0, num=200)
    search = GridSearchCV(model,
                          grid,
                          scoring='neg_mean_squared_error',
                          cv=cv,
                          n_jobs=-1)
    results_x = search.fit(Y, y_y)
    one_mse_value = search.cv_results_['mean_test_score'][
        -1] - search.cv_results_['mean_test_score'].std()
    a = [
        i for i in range(len(search.cv_results_['mean_test_score']))
        if search.cv_results_['mean_test_score'][i] > one_mse_value
    ]
    # search.param_grid['alpha'][0][int(a[0])]
    clf_y = Ridge(alpha=search.param_grid['alpha'][int(a[0])])
    clf_y.fit(Y, y_y)

    model = Ridge(fit_intercept=False)
    cv = RepeatedKFold(n_splits=5, n_repeats=10, random_state=25)
    grid = dict()
    grid['alpha'] = np.logspace(1.0, -4.0, num=10)
    search = GridSearchCV(model,
                          grid,
                          scoring='neg_mean_squared_error',
                          cv=cv,
                          n_jobs=-1)
    results_x = search.fit(N, y_r)
    one_mse_value = search.cv_results_['mean_test_score'][
        -1] - search.cv_results_['mean_test_score'].std()
    a = [
        i for i in range(len(search.cv_results_['mean_test_score']))
        if search.cv_results_['mean_test_score'][i] > one_mse_value
    ]
    # search.param_grid['alpha'][0][int(a[0])]
    clf_n = Ridge(alpha=search.param_grid['alpha'][int(a[0])])
    clf_n.fit(N, y_r)

    coef__ = np.array([
        np.asarray(clf_x.coef_[0]),
        np.asarray(clf_y.coef_[0]),
        np.asarray(clf_n.coef_[0])
    ])
    # print(coef__)
    u, v, r, hdg = df.loc[df.index[0],
                          'u'], df.loc[df.index[0],
                                       'v'], df.loc[df.index[0],
                                                    'r'], df.loc[df.index[0],
                                                                 'hdg']
    ship_it_model = ship_model(df.loc[df.index[0],
                                      'u_dot'], df.loc[df.index[0], 'v_dot'],
                               df.loc[df.index[0], 'r_dot'], ship_it, coef__)
    df_sim = pd.DataFrame([])
    for i in df[:-1].index:
        if i % 50 == 0:
            u, v, r, hdg = df.loc[i,
                                  'u'], df.loc[i,
                                               'v'], df.loc[i,
                                                            'r'], df.loc[i,
                                                                         'hdg']
        u, v, r, hdg, delta_x_0, delta_y_0, delta_r_0, u_dot, v_dot, r_dot = ship_it_model.manoeuvre_model_borkum(
            u, v, r, hdg, df.loc[i, 'rpm_0'], df.loc[i, 'rpm_1'],
            df.loc[i, 'rpm_2'], df.loc[i, 'rsa_0'], df.loc[i, 'rsa_1'],
            df.loc[i, 'rsa_2'], df.loc[i, 'delta_time'])
        # print(u, v, r, hdg)

        df_temp = pd.DataFrame({
            'index_sim': [i + 1],
            'x_delta_sim': [delta_x_0],
            'y_delta_sim': [delta_y_0],
            'hdg_delta_sim': [delta_r_0]
        })
        df_sim = pd.concat([df_sim, df_temp], axis=0)
    df = pd.merge(df,
                  df_sim,
                  how='left',
                  left_on=df.index,
                  right_on='index_sim')

    df['x_real_sim'] = df.x_delta_sim.cumsum()
    df['y_real_sim'] = df.y_delta_sim.cumsum()
    df['psi_sim'] = df.hdg_delta_sim.cumsum()

    df['x_real'] = df.x.cumsum()
    df['y_real'] = df.y.cumsum()

    df['x_diff'] = abs(df.x_delta_sim - df.x)
    df['y_diff'] = abs(df.y_delta_sim - df.y)
    df['error'] = np.sqrt(df.x_diff**2 + df.y_diff**2)

    plt.plot(df.x_real.tolist()[:], df.y_real.tolist()[:])
    plt.plot(df.x_real_sim.tolist()[:], df.y_real_sim.tolist()[:])
    # plt.plot(df.traj_error)
    plt.show()
    # print(df)
    feature = df.error.cumsum().iloc[-1]
    # print(feature)
    # print(feature)
    print(feature)
    if feature == np.inf or math.isnan(feature):
        feature = 1000000000000000000000000000000000

    return feature
def PID_tuner(x):
    #initialise ship
    u, v, r, hdg = 0, 0, 0, 0
    ship_ = ship()
    ship_model_ = ship_model(0, 0, 0, ship_, coef_)

    max_rpm_second = 0.25
    rpm = 0

    # (distance, time)
    speed_u = [(0, 0), (10, 40)]
    end_input = 0
    speed_u_position = 0
    current_speed_setting = 0
    t = 0
    dt = 0.4  #future noise
    t_end = 400
    pid_position = PID(P=x[0], I=x[1], D=x[2], Ibounds_speed=(-90, 90))

    #
    u_ref = []
    u_real = []
    x = 0
    while t < t_end:
        # calculate speed input
        if end_input == 0:
            if speed_u[speed_u_position][1] <= t:

                current_speed_setting = speed_u[speed_u_position][0]
                pid_position.setPoint_speed(current_speed_setting)
                speed_u_position += 1
                if speed_u_position == len(speed_u):
                    end_input = 1

        control_input = pid_position.update(x)
        sign_control_input = np.sign(control_input)
        # calculate speed control iput
        if abs(abs(control_input) - abs(rpm)) / dt > max_rpm_second:

            rpm = dt * sign_control_input * max_rpm_second + rpm
            if abs(rsa_1) > abs(pid_position.Integrator_max):
                rpm = np.sign(rpm) * abs(pid_position.Integrator_max)
        # print(rpm)
        # model
        u, v, r, hdg, delta_x_0, delta_y_0, delta_r_0, u_dot, v_dot, r_dot = ship_model.manoeuvre_model_rt_evolution(
            u,
            v,
            r,
            hdg,
            0,
            rpm_1,
            rpm_2,
            180,
            rsa_1,
            rsa_2,
            dt,
            # u_dot_arr, v_dot_arr, r_rot_arr
        )
        x = x + delta_y_0
        u_ref.append(current_speed_setting)
        u_real.append(u)
        t = t + dt

    u_ref_array = np.asarray(u_ref)
    u_real_array = np.asarray(u_real)

    u_score = abs(u_ref_array - u_real_array)
    u_score = u_score.sum()

    print(u_score)
    return u_score
from sklearn.model_selection import GridSearchCV
##
from ship_class import ship
from manoeuvre_model_borkum import ship_model
ship = ship()

df_main = pd.read_csv('test_1_large.csv', sep=',')
df_main = df_main[:100]
coef_ = np.genfromtxt('foo_evo_general.csv', delimiter=',')

u, v, r, hdg = df_main.loc[df_main.index[0], 'u'], df_main.loc[
    df_main.index[0], 'v'], df_main.loc[df_main.index[0],
                                        'r'], df_main.loc[df_main.index[0],
                                                          'hdg']
ship_model = ship_model(df_main.loc[df_main.index[0], 'u_dot'],
                        df_main.loc[df_main.index[0], 'v_dot'],
                        df_main.loc[df_main.index[0], 'r_dot'], ship, coef_)
df_sim = pd.DataFrame([])

# coef_[2][5] = coef_[2][5] -1000000
# coef_[2][1] = coef_[2][1] +10000
for i in df_main[:-1].index:
    if i % 5 == 0:

        u, v, r, hdg = df_main.loc[i, 'u'], df_main.loc[i, 'v'], df_main.loc[
            i, 'r'], df_main.loc[i, 'hdg']
    u, v, r, hdg, delta_x_0, delta_y_0, delta_r_0, u_dot, v_dot, r_dot = ship_model.manoeuvre_model_rt_evolution(
        u,
        v,
        r,
        hdg,