Exemplo n.º 1
0
def correct_for_multiple_scattering(ws_name,first_spectrum,last_spectrum, sample_properties, transmission_guess,
                                    multiple_scattering_order, number_of_events, g_log, masses, mean_intensity_ratios):
    g_log.debug( "Evaluating the Multiple Scattering Correction.")
    dens, trans = sapi.VesuvioThickness(Masses=masses, Amplitudes=mean_intensity_ratios, TransmissionGuess=transmission_guess,Thickness=0.1)
    _TotScattering, _MulScattering = sapi.VesuvioCalculateMS(ws_name, NoOfMasses=len(masses), SampleDensity=dens.cell(9,1),
                                                             AtomicProperties=sample_properties, BeamRadius=2.5,
                                                             NumScatters=multiple_scattering_order,
                                                             NumEventsPerRun=int(number_of_events))
    data_normalisation = sapi.Integration(ws_name)
    simulation_normalisation = sapi.Integration("_TotScattering")
    for workspace in ("_MulScattering","_TotScattering"):
        ws = sapi.mtd[workspace]
        for j in range(ws.getNumberHistograms()):
            for k in range(ws.blocksize()):
                ws.dataE(j)[
                         k] =0. # set the errors from the MonteCarlo simulation to zero - no propagation of such uncertainties
                #- Use high number of events for final corrections!!!
        sapi.Divide(LHSWorkspace = workspace, RHSWorkspace = simulation_normalisation, OutputWorkspace = workspace)
        sapi.Multiply(LHSWorkspace = workspace, RHSWorkspace = data_normalisation, OutputWorkspace = workspace)
        sapi.RenameWorkspace(InputWorkspace = workspace, OutputWorkspace = str(ws_name)+workspace)
    safe_delete_ws(data_normalisation)
    safe_delete_ws(simulation_normalisation)
    safe_delete_ws(trans)
    safe_delete_ws(dens)
    return
Exemplo n.º 2
0
    def _ms_correction(self):
        """
        Calculates the contributions from multiple scattering
        on the input data from the set of given options
        """
        params_dict = TableWorkspaceDictionaryFacade(
            self.getProperty("FitParameters").value)

        atom_props = list()
        intensities = list()

        contains_hydrogen = False

        i = 0

        for idx, mass in enumerate(self._masses):

            if str(idx) in self._index_to_symbol_map:
                symbol = self._index_to_symbol_map[str(idx)].value
            else:
                symbol = None

            if symbol == 'H' and self._back_scattering:
                contains_hydrogen = True
                continue

            intensity_prop = 'f%d.Intensity' % i
            c0_prop = 'f%d.C_0' % i

            if intensity_prop in params_dict:
                intensity = params_dict[intensity_prop]
            elif c0_prop in params_dict:
                intensity = params_dict[c0_prop]
            else:
                i = i + 1
                continue

            # The program DINSMS_BATCH uses those sample parameters together with the sigma divided
            # by the sum absolute of scattering intensities for each detector (detector bank),
            # sigma/int_sum
            # Thus:
            # intensity = intensity/intensity_sum

            # In the thin sample limit, 1-exp(-n*dens*sigma) ~ n*dens*sigma, effectively the same
            # scattering power (ratio of double to single scatt.)  is obtained either by using
            # relative intensities ( sigma/int_sum ) or density divided by the total intensity
            # However, in the realistic case of thick sample, the SampleDensity, dens,  must be
            # obtained by iterative numerical solution of the Eq:
            # 1-exp(-n*dens*sigma) = measured scattering power of the sample.
            # For this, a program like THICK must be used.
            # The program THICK also uses sigma/int_sum to be consistent with the prgram
            # DINSMS_BATCH

            width_prop = 'f%d.Width' % i
            sigma_x_prop = 'f%d.SigmaX' % i
            sigma_y_prop = 'f%d.SigmaY' % i
            sigma_z_prop = 'f%d.SigmaZ' % i

            if width_prop in params_dict:
                width = params_dict['f%d.Width' % i]
            elif sigma_x_prop in params_dict:
                sigma_x = float(params_dict[sigma_x_prop])
                sigma_y = float(params_dict[sigma_y_prop])
                sigma_z = float(params_dict[sigma_z_prop])
                width = math.sqrt((sigma_x**2 + sigma_y**2 + sigma_z**2) / 3.0)
            else:
                i = i + 1
                continue

            atom_props.append(mass)
            atom_props.append(intensity)
            atom_props.append(width)
            intensities.append(intensity)

            # Check for NoneType is necessary as hydrogen constraints are
            # stored in a C++ PropertyManager object, not a dict; call to
            # __contains__ must match the C++ signature.
            if self._back_scattering and symbol is not None and symbol in self._hydrogen_constraints:
                self._hydrogen_constraints[symbol].value[
                    'intensity'] = intensity

            i = i + 1

        if self._back_scattering and contains_hydrogen:
            material_builder = MaterialBuilder()
            hydrogen = material_builder.setFormula('H').build()
            hydrogen_intensity = \
                self._calculate_hydrogen_intensity(hydrogen, self._hydrogen_constraints)
            hydrogen_width = 5
            atom_props.append(hydrogen.relativeMolecularMass())
            atom_props.append(hydrogen_intensity)
            atom_props.append(hydrogen_width)
            intensities.append(hydrogen_intensity)

        intensity_sum = sum(intensities)

        # Create the sample shape
        # Input dimensions are expected in CM
        ms.CreateSampleShape(InputWorkspace=self._output_ws,
                             ShapeXML=create_cuboid_xml(
                                 self.getProperty("SampleHeight").value / 100.,
                                 self.getProperty("SampleWidth").value / 100.,
                                 self.getProperty("SampleDepth").value / 100.))

        # Massage options into how algorithm expects them
        total_scatter_correction = str(
            self._correction_wsg) + "_TotalScattering"
        multi_scatter_correction = str(
            self._correction_wsg) + "_MultipleScattering"

        # Calculation
        # In the thin sample limit, 1-exp(-n*dens*sigma) ~ n*dens*sigma, effectively the same
        # scattering power(ratio of double to single scatt.)  is obtained either by using relative
        # intensities ( sigma/int_sum )or density divided by the total intensity.
        # However, in the realistic case of thick sample, the SampleDensity, dens,  must be
        # obtained by iterative numerical solution of the Eq:
        # 1-exp(-n*dens*sigma) = measured scattering power of the sample.
        # For this, a program like THICK must be used.
        # The program THICK also uses sigma/int_sum to be consistent with the prgram DINSMS_BATCH
        # The algorithm VesuvioCalculateMs called by the algorithm VesuvioCorrections takes the
        # parameter AtomicProperties with the absolute intensities, contraty to DINSMS_BATCH which
        # takes in relative intensities.
        # To compensate for this, the thickness parameter, dens (SampleDensity),  is divided in by
        # the sum of absolute intensities in VesuvioCorrections before being passed to
        # VesuvioCalculateMs.
        # Then, for the modified VesuvioCorrection algorithm one can use the thickenss parameter is
        # as is from the THICK command, i.e. 43.20552
        # This works, however, only in the thin sample limit, contrary to the THICK program. Thus,
        # for some detectors (detector banks) the SampleDensiy parameter may be over(under)
        # estimated.

        ms.VesuvioCalculateMS(
            InputWorkspace=self._output_ws,
            NoOfMasses=int(len(atom_props) / 3),
            SampleDensity=self.getProperty("SampleDensity").value /
            intensity_sum,
            AtomicProperties=atom_props,
            BeamRadius=self.getProperty("BeamRadius").value,
            NumEventsPerRun=self.getProperty("NumEvents").value,
            TotalScatteringWS=total_scatter_correction,
            MultipleScatteringWS=multi_scatter_correction)

        # Smooth the output
        smooth_neighbours = self.getProperty("SmoothNeighbours").value
        ms.SmoothData(InputWorkspace=total_scatter_correction,
                      OutputWorkspace=total_scatter_correction,
                      NPoints=smooth_neighbours)
        ms.SmoothData(InputWorkspace=multi_scatter_correction,
                      OutputWorkspace=multi_scatter_correction,
                      NPoints=smooth_neighbours)

        return total_scatter_correction, multi_scatter_correction
Exemplo n.º 3
0
    def _ms_correction(self):
        """
        Calculates the contributions from multiple scattering
        on the input data from the set of given options
        """

        masses = self.getProperty("Masses").value
        params_ws_name = self.getPropertyValue("FitParameters")
        params_dict = TableWorkspaceDictionaryFacade(mtd[params_ws_name])

        atom_props = list()
        intensities = list()

        for i, mass in enumerate(masses):
            intentisty_prop = 'f%d.Intensity' % i
            c0_prop = 'f%d.C_0' % i

            if intentisty_prop in params_dict:
                intentisy = params_dict[intentisty_prop]
            elif c0_prop in params_dict:
                intentisy = params_dict[c0_prop]
            else:
                continue

            # The program DINSMS_BATCH uses those sample parameters together with the sigma divided
            # by the sum absolute of scattering intensities for each detector (detector bank),
            # sigma/int_sum
            # Thus:
            # intensity = intensity/intensity_sum

            # In the thin sample limit, 1-exp(-n*dens*sigma) ~ n*dens*sigma, effectively the same
            # scattering power (ratio of double to single scatt.)  is obtained either by using
            # relative intensities ( sigma/int_sum ) or density divided by the total intensity
            # However, in the realistic case of thick sample, the SampleDensity, dens,  must be
            # obtained by iterative numerical solution of the Eq:
            # 1-exp(-n*dens*sigma) = measured scattering power of the sample.
            # For this, a program like THICK must be used.
            # The program THICK also uses sigma/int_sum to be consistent with the prgram
            # DINSMS_BATCH

            width_prop = 'f%d.Width' % i
            sigma_x_prop = 'f%d.SigmaX' % i
            sigma_y_prop = 'f%d.SigmaY' % i
            sigma_z_prop = 'f%d.SigmaZ' % i

            if width_prop in params_dict:
                width = params_dict['f%d.Width' % i]
            elif sigma_x_prop in params_dict:
                sigma_x = float(params_dict[sigma_x_prop])
                sigma_y = float(params_dict[sigma_y_prop])
                sigma_z = float(params_dict[sigma_z_prop])
                width = math.sqrt((sigma_x**2 + sigma_y**2 + sigma_z**2) / 3.0)
            else:
                continue

            atom_props.append(mass)
            atom_props.append(intentisy)
            atom_props.append(width)
            intensities.append(intentisy)

        intensity_sum = sum(intensities)

        # Create the sample shape
        # Input dimensions are expected in CM
        ms.CreateSampleShape(InputWorkspace=self._output_ws,
                             ShapeXML=create_cuboid_xml(
                                 self.getProperty("SampleHeight").value / 100.,
                                 self.getProperty("SampleWidth").value / 100.,
                                 self.getProperty("SampleDepth").value / 100.))

        # Massage options into how algorithm expects them
        total_scatter_correction = str(
            self._correction_wsg) + "_TotalScattering"
        multi_scatter_correction = str(
            self._correction_wsg) + "_MultipleScattering"

        # Calculation
        # In the thin sample limit, 1-exp(-n*dens*sigma) ~ n*dens*sigma, effectively the same
        # scattering power(ratio of double to single scatt.)  is obtained either by using relative
        # intensities ( sigma/int_sum )or density divided by the total intensity.
        # However, in the realistic case of thick sample, the SampleDensity, dens,  must be
        # obtained by iterative numerical solution of the Eq:
        # 1-exp(-n*dens*sigma) = measured scattering power of the sample.
        # For this, a program like THICK must be used.
        # The program THICK also uses sigma/int_sum to be consistent with the prgram DINSMS_BATCH
        # The algorithm VesuvioCalculateMs called by the algorithm VesuvioCorrections takes the
        # parameter AtomicProperties with the absolute intensities, contraty to DINSMS_BATCH which
        # takes in relative intensities.
        # To compensate for this, the thickness parameter, dens (SampleDensity),  is divided in by
        # the sum of absolute intensities in VesuvioCorrections before being passed to
        # VesuvioCalculateMs.
        # Then, for the modified VesuvioCorrection algorithm one can use the thickenss parameter is
        # as is from the THICK command, i.e. 43.20552
        # This works, however, only in the thin sample limit, contrary to the THICK program. Thus,
        # for some detectors (detector banks) the SampleDensiy parameter may be over(under)
        # estimated.

        ms.VesuvioCalculateMS(
            InputWorkspace=self._output_ws,
            NoOfMasses=len(atom_props) / 3,
            SampleDensity=self.getProperty("SampleDensity").value /
            intensity_sum,
            AtomicProperties=atom_props,
            BeamRadius=self.getProperty("BeamRadius").value,
            NumEventsPerRun=self.getProperty("NumEvents").value,
            TotalScatteringWS=total_scatter_correction,
            MultipleScatteringWS=multi_scatter_correction)

        # Smooth the output
        smooth_neighbours = self.getProperty("SmoothNeighbours").value
        ms.SmoothData(InputWorkspace=total_scatter_correction,
                      OutputWorkspace=total_scatter_correction,
                      NPoints=smooth_neighbours)
        ms.SmoothData(InputWorkspace=multi_scatter_correction,
                      OutputWorkspace=multi_scatter_correction,
                      NPoints=smooth_neighbours)

        return total_scatter_correction, multi_scatter_correction