Exemplo n.º 1
0
 def processData(self, filename, wsName):
     if filename != '':
         if self._SystemTest:
             Load(Filename=filename, OutputWorkspace=wsName, BankName = 'bank22')
         else:
             Load(Filename=filename, OutputWorkspace=wsName)
     FindDetectorsPar(InputWorkspace=wsName,
                      ReturnLinearRanges=self._returnLinearRanges,
                      ParFile=self._parFile,
                      OutputParTable=self._outputParTable)
     FilterBadPulses(InputWorkspace=wsName, Outputworkspace=wsName, LowerCutoff=self._lowerCutoff)
     RemovePromptPulse(InputWorkspace=wsName, OutputWorkspace=wsName, Width=self._width, Frequency=self._frequency)
     LoadDiffCal(InputWorkspace=wsName,
                 InstrumentName=self._instrumentName,
                 InstrumentFilename=self._instrumentFilename,
                 Filename=self._filename,
                 MakeGroupingWorkspace=self._makeGroupingWorkspace,
                 MakeCalWorkspace=self._makeCalWorkspace,
                 MakeMaskWorkspace=self._makeMaskWorkspace,
                 WorkspaceName=self._workspaceName,
                 TofMin=self._tofMin,
                 TofMax=self._tofMax,
                 FixConversionIssues=self._fixConversionIssues)
     MaskDetectors(Workspace=wsName,
                   SpectraList=self._spectraList,
                   DetectorList=self._detectorList,
                   WorkspaceIndexList=self._workspaceIndexList,
                   MaskedWorkspace=self._maskedWorkspace,
                   ForceInstrumentMasking=self._forceInstrumentMasking,
                   StartWorkspaceIndex=self._startWorkspaceIndex,
                   EndWorkspaceIndex=self._endWorkspaceIndex,
                   ComponentList=self._componentList)
     AlignDetectors(InputWorkspace=wsName, OutputWorkspace=wsName, CalibrationFile=self._calibrationFile)
     ConvertUnits(InputWorkspace=wsName, OutputWorkspace=wsName, Target='Wavelength')
    def __setupCalibration(self, wksp):
        '''Convert whatever calibration/grouping/masking into workspaces that will be passed down'''
        if self.haveDeterminedCalibration:
            return  # nothing to do
        self.haveDeterminedCalibration = True

        # first see if the workspaces have been specified
        # check that the canonical names don't already exist as a backup
        if not self.getProperty('CalibrationWorkspace').isDefault:
            self.__calWksp = self.getPropertyValue('CalibrationWorkspace')
        elif not self.getProperty('OffsetsWorkspace').isDefault:
            self.__calWksp = self.getPropertyValue('OffsetsWorkspace') + '_cal'
            ConvertDiffCal(OffsetsWorkspace=self.getPropertyValue('OffsetsWorkspace'),
                           OutputWorkspace=self.instr + '_cal')
            self.setProperty('CalibrationWorkspace', self.__calWksp)
        elif mtd.doesExist(self.instr + '_cal'):
            self.__calWksp = self.instr + '_cal'

        if not self.getProperty('GroupingWorkspace').isDefault:
            self.__grpWksp = self.getPropertyValue('GroupingWorkspace')
        elif mtd.doesExist(self.instr + '_group'):
            self.__grpWksp = self.instr + '_group'

        if not self.getProperty('MaskWorkspace').isDefault:
            self.__mskWksp = self.getPropertyValue('MaskWorkspace')
        elif mtd.doesExist(self.instr + '_mask'):
            self.__mskWksp = self.instr + '_mask'

        # check that anything was specified
        if self.getProperty('CalFileName').isDefault and self.getProperty('GroupFilename').isDefault:
            self.kwargs = self.__getAlignAndFocusArgs()
            return

        # decide what to load
        loadCalibration = not bool(self.__calWksp)
        loadGrouping = not bool(self.__grpWksp)
        loadMask = not bool(self.__mskWksp)

        # load and update
        if loadCalibration or loadGrouping or loadMask:
            if not wksp:
                raise RuntimeError('Trying to load calibration without a donor workspace')
            LoadDiffCal(InputWorkspace=wksp,
                        Filename=self.getPropertyValue('CalFileName'),
                        GroupFilename=self.getPropertyValue('GroupFilename'),
                        MakeCalWorkspace=loadCalibration,
                        MakeGroupingWorkspace=loadGrouping,
                        MakeMaskWorkspace=loadMask,
                        WorkspaceName=self.instr)
        if loadCalibration:
            self.__calWksp = self.instr + '_cal'
            self.setPropertyValue('CalibrationWorkspace', self.instr + '_cal')
        if loadGrouping:
            self.__grpWksp = self.instr + '_group'
            self.setPropertyValue('GroupingWorkspace', self.instr + '_group')
        if loadMask:
            self.__mskWksp = self.instr + '_mask'
            self.setPropertyValue('MaskWorkspace', self.instr + '_mask')
        self.kwargs = self.__getAlignAndFocusArgs()
Exemplo n.º 3
0
def _get_difc_ws(wksp, instr_ws=None):
    if wksp is None:
        return None
    # Check if given a workspace
    ws_str = str(wksp)
    difc_ws = None
    if not mtd.doesExist(ws_str):
        # Check if it was a file instead
        if ws_str.endswith(tuple([".h5", ".hd5", ".hdf", ".cal"])):
            try:
                LoadDiffCal(Filename=ws_str,
                            WorkspaceName="__cal_{}".format(ws_str))
                difc_ws = CalculateDIFC(
                    InputWorkspace="__cal_{}_group".format(ws_str),
                    CalibrationWorkspace="__cal_{}_cal".format(ws_str),
                    OutputWorkspace="__difc_{}".format(ws_str))
            except:
                raise RuntimeError(
                    "Could not load calibration file {}".format(ws_str))
        else:
            raise RuntimeError(
                "Could not find workspace {} in ADS and it was not a file".
                format(ws_str))
    else:
        # If workspace exists, check if it is a SpecialWorkspace2D (result from CalculateDIFC)
        if mtd[ws_str].id() == "SpecialWorkspace2D":
            difc_ws = mtd[ws_str]
        elif mtd[ws_str].id() == "TableWorkspace":
            if not mtd.doesExist(str(instr_ws)):
                raise RuntimeError(
                    "Expected instrument workspace instr_ws to use with calibration tables"
                )
            # Check if the workspace looks like a calibration workspace
            col_names = mtd[ws_str].getColumnNames()
            # Only need the first two columns for the CalculateDIFC algorithm to work
            if len(col_names) >= 2 and col_names[0] == "detid" and col_names[
                    1] == "difc":
                # Calculate DIFC on this workspace
                difc_ws = CalculateDIFC(
                    InputWorkspace=mtd[str(instr_ws)],
                    CalibrationWorkspace=mtd[ws_str],
                    OutputWorkspace="__difc_{}".format(ws_str))
        else:
            raise TypeError(
                "Wrong workspace type. Expects SpecialWorkspace2D, TableWorkspace, or a filename"
            )
    return difc_ws
def TotalScatteringReduction(config=None):
    facility = config['Facility']
    title = config['Title']
    instr = config['Instrument']

    # Get an instance to Mantid's logger
    log = Logger("TotalScatteringReduction")

    # Get sample info
    sample = get_sample(config)
    sam_mass_density = sample.get('MassDensity', None)
    sam_packing_fraction = sample.get('PackingFraction', None)
    sam_geometry = sample.get('Geometry', None)
    sam_material = sample.get('Material', None)

    sam_geo_dict = {
        'Shape': 'Cylinder',
        'Radius': config['Sample']['Geometry']['Radius'],
        'Height': config['Sample']['Geometry']['Height']
    }
    sam_mat_dict = {
        'ChemicalFormula': sam_material,
        'SampleMassDensity': sam_mass_density
    }
    if 'Environment' in config:
        sam_env_dict = {
            'Name': config['Environment']['Name'],
            'Container': config['Environment']['Container']
        }
    else:
        sam_env_dict = {'Name': 'InAir', 'Container': 'PAC06'}
    # Get normalization info
    van = get_normalization(config)
    van_mass_density = van.get('MassDensity', None)
    van_packing_fraction = van.get('PackingFraction', 1.0)
    van_geometry = van.get('Geometry', None)
    van_material = van.get('Material', 'V')

    van_geo_dict = {
        'Shape': 'Cylinder',
        'Radius': config['Normalization']['Geometry']['Radius'],
        'Height': config['Normalization']['Geometry']['Height']
    }
    van_mat_dict = {
        'ChemicalFormula': van_material,
        'SampleMassDensity': van_mass_density
    }

    # Get calibration, characterization, and other settings
    merging = config['Merging']
    binning = merging['QBinning']
    characterizations = merging.get('Characterizations', None)

    # Grouping
    grouping = merging.get('Grouping', None)
    cache_dir = config.get("CacheDir", os.path.abspath('.'))
    OutputDir = config.get("OutputDir", os.path.abspath('.'))

    # Create Nexus file basenames
    sample['Runs'] = expand_ints(sample['Runs'])
    sample['Background']['Runs'] = expand_ints(sample['Background'].get(
        'Runs', None))
    '''
    Currently not implemented:
    # wkspIndices = merging.get('SumBanks', None)
    # high_q_linear_fit_range = config['HighQLinearFitRange']

    POWGEN options not used
    #alignAndFocusArgs['RemovePromptPulseWidth'] = 50
    # alignAndFocusArgs['CompressTolerance'] use defaults
    # alignAndFocusArgs['UnwrapRef'] POWGEN option
    # alignAndFocusArgs['LowResRef'] POWGEN option
    # alignAndFocusArgs['LowResSpectrumOffset'] POWGEN option

    How much of each bank gets merged has info here in the form of
    # {"ID", "Qmin", "QMax"}
    # alignAndFocusArgs['CropWavelengthMin'] from characterizations file
    # alignAndFocusArgs['CropWavelengthMax'] from characterizations file
    '''

    if facility == 'SNS':
        facility_file_format = '%s_%d'
    else:
        facility_file_format = '%s%d'

    sam_scans = ','.join(
        [facility_file_format % (instr, num) for num in sample['Runs']])
    container_scans = ','.join([
        facility_file_format % (instr, num)
        for num in sample['Background']["Runs"]
    ])
    container_bg = None
    if "Background" in sample['Background']:
        sample['Background']['Background']['Runs'] = expand_ints(
            sample['Background']['Background']['Runs'])
        container_bg = ','.join([
            facility_file_format % (instr, num)
            for num in sample['Background']['Background']['Runs']
        ])
        if len(container_bg) == 0:
            container_bg = None

    van['Runs'] = expand_ints(van['Runs'])
    van_scans = ','.join(
        [facility_file_format % (instr, num) for num in van['Runs']])

    van_bg_scans = None
    if 'Background' in van:
        van_bg_scans = van['Background']['Runs']
        van_bg_scans = expand_ints(van_bg_scans)
        van_bg_scans = ','.join(
            [facility_file_format % (instr, num) for num in van_bg_scans])

    # Override Nexus file basename with Filenames if present
    if "Filenames" in sample:
        sam_scans = ','.join(sample["Filenames"])
    if "Filenames" in sample['Background']:
        container_scans = ','.join(sample['Background']["Filenames"])
    if "Background" in sample['Background']:
        if "Filenames" in sample['Background']['Background']:
            container_bg = ','.join(
                sample['Background']['Background']['Filenames'])
    if "Filenames" in van:
        van_scans = ','.join(van["Filenames"])
    if "Background" in van:
        if "Filenames" in van['Background']:
            van_bg_scans = ','.join(van['Background']["Filenames"])

    # Output nexus filename
    nexus_filename = title + '.nxs'
    try:
        os.remove(nexus_filename)
    except OSError:
        pass

    # Get sample corrections
    sam_abs_corr = sample.get("AbsorptionCorrection", None)
    sam_ms_corr = sample.get("MultipleScatteringCorrection", None)
    sam_inelastic_corr = SetInelasticCorrection(
        sample.get('InelasticCorrection', None))

    # Warn about having absorption correction and multiple scat correction set
    if sam_abs_corr and sam_ms_corr:
        log.warning(MS_AND_ABS_CORR_WARNING)

    # Compute the absorption correction on the sample if it was provided
    sam_abs_ws = ''
    con_abs_ws = ''
    if sam_abs_corr:
        msg = "Applying '{}' absorption correction to sample"
        log.notice(msg.format(sam_abs_corr["Type"]))
        sam_abs_ws, con_abs_ws = create_absorption_wksp(
            sam_scans, sam_abs_corr["Type"], sam_geo_dict, sam_mat_dict,
            sam_env_dict, **config)

    # Get vanadium corrections
    van_mass_density = van.get('MassDensity', van_mass_density)
    van_packing_fraction = van.get('PackingFraction', van_packing_fraction)
    van_abs_corr = van.get("AbsorptionCorrection", {"Type": None})
    van_ms_corr = van.get("MultipleScatteringCorrection", {"Type": None})
    van_inelastic_corr = SetInelasticCorrection(
        van.get('InelasticCorrection', None))

    # Warn about having absorption correction and multiple scat correction set
    if van_abs_corr["Type"] and van_ms_corr["Type"]:
        log.warning(MS_AND_ABS_CORR_WARNING)

    # Compute the absorption correction for the vanadium if provided
    van_abs_corr_ws = ''
    if van_abs_corr:
        msg = "Applying '{}' absorption correction to vanadium"
        log.notice(msg.format(van_abs_corr["Type"]))
        van_abs_corr_ws, van_con_ws = create_absorption_wksp(
            van_scans, van_abs_corr["Type"], van_geo_dict, van_mat_dict,
            **config)

    alignAndFocusArgs = dict()
    alignAndFocusArgs['CalFilename'] = config['Calibration']['Filename']
    # alignAndFocusArgs['GroupFilename'] don't use
    # alignAndFocusArgs['Params'] = "0.,0.02,40."
    alignAndFocusArgs['ResampleX'] = -6000
    alignAndFocusArgs['Dspacing'] = False
    alignAndFocusArgs['PreserveEvents'] = False
    alignAndFocusArgs['MaxChunkSize'] = 8
    alignAndFocusArgs['CacheDir'] = os.path.abspath(cache_dir)

    # Get any additional AlignAndFocusArgs from JSON input
    if "AlignAndFocusArgs" in config:
        otherArgs = config["AlignAndFocusArgs"]
        alignAndFocusArgs.update(otherArgs)

    # Setup grouping
    output_grouping = False
    grp_wksp = "wksp_output_group"

    if grouping:
        if 'Initial' in grouping:
            if grouping['Initial'] and not grouping['Initial'] == u'':
                alignAndFocusArgs['GroupFilename'] = grouping['Initial']
        if 'Output' in grouping:
            if grouping['Output'] and not grouping['Output'] == u'':
                output_grouping = True
                LoadDetectorsGroupingFile(InputFile=grouping['Output'],
                                          OutputWorkspace=grp_wksp)
    # If no output grouping specified, create it with Calibration Grouping
    if not output_grouping:
        LoadDiffCal(alignAndFocusArgs['CalFilename'],
                    InstrumentName=instr,
                    WorkspaceName=grp_wksp.replace('_group', ''),
                    MakeGroupingWorkspace=True,
                    MakeCalWorkspace=False,
                    MakeMaskWorkspace=False)

    # Setup the 6 bank method if no grouping specified
    if not grouping:
        CreateGroupingWorkspace(InstrumentName=instr,
                                GroupDetectorsBy='Group',
                                OutputWorkspace=grp_wksp)
        alignAndFocusArgs['GroupingWorkspace'] = grp_wksp

    # TODO take out the RecalculatePCharge in the future once tested
    # Load Sample
    print("#-----------------------------------#")
    print("# Sample")
    print("#-----------------------------------#")
    sam_wksp = load('sample', sam_scans, sam_geometry, sam_material,
                    sam_mass_density, sam_abs_ws, **alignAndFocusArgs)
    sample_title = "sample_and_container"
    save_banks(InputWorkspace=sam_wksp,
               Filename=nexus_filename,
               Title=sample_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    sam_molecular_mass = mtd[sam_wksp].sample().getMaterial(
    ).relativeMolecularMass()
    natoms = getNumberAtoms(sam_packing_fraction,
                            sam_mass_density,
                            sam_molecular_mass,
                            Geometry=sam_geometry)

    # Load Sample Container
    print("#-----------------------------------#")
    print("# Sample Container")
    print("#-----------------------------------#")
    container = load('container',
                     container_scans,
                     absorption_wksp=con_abs_ws,
                     **alignAndFocusArgs)
    save_banks(InputWorkspace=container,
               Filename=nexus_filename,
               Title=container,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Load Sample Container Background

    if container_bg is not None:
        print("#-----------------------------------#")
        print("# Sample Container's Background")
        print("#-----------------------------------#")
        container_bg = load('container_background', container_bg,
                            **alignAndFocusArgs)
        save_banks(InputWorkspace=container_bg,
                   Filename=nexus_filename,
                   Title=container_bg,
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

    # Load Vanadium

    print("#-----------------------------------#")
    print("# Vanadium")
    print("#-----------------------------------#")
    van_wksp = load('vanadium', van_scans, van_geometry, van_material,
                    van_mass_density, van_abs_corr_ws, **alignAndFocusArgs)
    vanadium_title = "vanadium_and_background"

    save_banks(InputWorkspace=van_wksp,
               Filename=nexus_filename,
               Title=vanadium_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    van_material = mtd[van_wksp].sample().getMaterial()
    van_molecular_mass = van_material.relativeMolecularMass()
    nvan_atoms = getNumberAtoms(1.0,
                                van_mass_density,
                                van_molecular_mass,
                                Geometry=van_geometry)

    print("Sample natoms:", natoms)
    print("Vanadium natoms:", nvan_atoms)
    print("Vanadium natoms / Sample natoms:", nvan_atoms / natoms)

    # Load Vanadium Background
    van_bg = None
    if van_bg_scans is not None:
        print("#-----------------------------------#")
        print("# Vanadium Background")
        print("#-----------------------------------#")
        van_bg = load('vanadium_background', van_bg_scans, **alignAndFocusArgs)
        vanadium_bg_title = "vanadium_background"
        save_banks(InputWorkspace=van_bg,
                   Filename=nexus_filename,
                   Title=vanadium_bg_title,
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

    # Load Instrument Characterizations
    if characterizations:
        PDDetermineCharacterizations(
            InputWorkspace=sam_wksp,
            Characterizations='characterizations',
            ReductionProperties='__snspowderreduction')
        propMan = PropertyManagerDataService.retrieve('__snspowderreduction')
        qmax = 2. * np.pi / propMan['d_min'].value
        qmin = 2. * np.pi / propMan['d_max'].value
        for a, b in zip(qmin, qmax):
            print('Qrange:', a, b)
        # TODO: Add when we apply Qmin, Qmax cropping
        # mask_info = generate_cropping_table(qmin, qmax)

    # STEP 1: Subtract Backgrounds

    sam_raw = 'sam_raw'
    CloneWorkspace(InputWorkspace=sam_wksp,
                   OutputWorkspace=sam_raw)  # for later

    container_raw = 'container_raw'
    CloneWorkspace(InputWorkspace=container,
                   OutputWorkspace=container_raw)  # for later

    if van_bg is not None:
        RebinToWorkspace(WorkspaceToRebin=van_bg,
                         WorkspaceToMatch=van_wksp,
                         OutputWorkspace=van_bg)
        Minus(LHSWorkspace=van_wksp,
              RHSWorkspace=van_bg,
              OutputWorkspace=van_wksp)

    RebinToWorkspace(WorkspaceToRebin=container,
                     WorkspaceToMatch=sam_wksp,
                     OutputWorkspace=container)
    Minus(LHSWorkspace=sam_wksp,
          RHSWorkspace=container,
          OutputWorkspace=sam_wksp)

    if container_bg is not None:
        RebinToWorkspace(WorkspaceToRebin=container_bg,
                         WorkspaceToMatch=container,
                         OutputWorkspace=container_bg)
        Minus(LHSWorkspace=container,
              RHSWorkspace=container_bg,
              OutputWorkspace=container)

    for wksp in [container, van_wksp, sam_wksp]:
        ConvertUnits(InputWorkspace=wksp,
                     OutputWorkspace=wksp,
                     Target="MomentumTransfer",
                     EMode="Elastic")
    container_title = "container_minus_back"
    vanadium_title = "vanadium_minus_back"
    sample_title = "sample_minus_back"
    save_banks(InputWorkspace=container,
               Filename=nexus_filename,
               Title=container_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)
    save_banks(InputWorkspace=van_wksp,
               Filename=nexus_filename,
               Title=vanadium_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)
    save_banks(InputWorkspace=sam_wksp,
               Filename=nexus_filename,
               Title=sample_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # STEP 2.0: Prepare vanadium as normalization calibrant

    # Multiple-Scattering and Absorption (Steps 2-4) for Vanadium

    van_corrected = 'van_corrected'
    ConvertUnits(InputWorkspace=van_wksp,
                 OutputWorkspace=van_corrected,
                 Target="Wavelength",
                 EMode="Elastic")

    if "Type" in van_abs_corr:
        if van_abs_corr['Type'] == 'Carpenter' \
                or van_ms_corr['Type'] == 'Carpenter':
            CarpenterSampleCorrection(
                InputWorkspace=van_corrected,
                OutputWorkspace=van_corrected,
                CylinderSampleRadius=van['Geometry']['Radius'])
        elif van_abs_corr['Type'] == 'Mayers' \
                or van_ms_corr['Type'] == 'Mayers':
            if van_ms_corr['Type'] == 'Mayers':
                MayersSampleCorrection(InputWorkspace=van_corrected,
                                       OutputWorkspace=van_corrected,
                                       MultipleScattering=True)
            else:
                MayersSampleCorrection(InputWorkspace=van_corrected,
                                       OutputWorkspace=van_corrected,
                                       MultipleScattering=False)
        else:
            print("NO VANADIUM absorption or multiple scattering!")
    else:
        CloneWorkspace(InputWorkspace=van_corrected,
                       OutputWorkspace=van_corrected)

    ConvertUnits(InputWorkspace=van_corrected,
                 OutputWorkspace=van_corrected,
                 Target='MomentumTransfer',
                 EMode='Elastic')
    vanadium_title += "_ms_abs_corrected"
    save_banks(InputWorkspace=van_corrected,
               Filename=nexus_filename,
               Title=vanadium_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)
    save_banks(InputWorkspace=van_corrected,
               Filename=nexus_filename,
               Title=vanadium_title + "_with_peaks",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # TODO subtract self-scattering of vanadium (According to Eq. 7 of Howe,
    # McGreevey, and Howells, JPCM, 1989)

    # Smooth Vanadium (strip peaks plus smooth)

    ConvertUnits(InputWorkspace=van_corrected,
                 OutputWorkspace=van_corrected,
                 Target='dSpacing',
                 EMode='Elastic')

    # After StripVanadiumPeaks, the workspace goes from EventWorkspace ->
    # Workspace2D
    StripVanadiumPeaks(InputWorkspace=van_corrected,
                       OutputWorkspace=van_corrected,
                       BackgroundType='Quadratic')
    ConvertUnits(InputWorkspace=van_corrected,
                 OutputWorkspace=van_corrected,
                 Target='MomentumTransfer',
                 EMode='Elastic')
    vanadium_title += '_peaks_stripped'
    save_banks(InputWorkspace=van_corrected,
               Filename=nexus_filename,
               Title=vanadium_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    ConvertUnits(InputWorkspace=van_corrected,
                 OutputWorkspace=van_corrected,
                 Target='TOF',
                 EMode='Elastic')

    FFTSmooth(InputWorkspace=van_corrected,
              OutputWorkspace=van_corrected,
              Filter="Butterworth",
              Params='20,2',
              IgnoreXBins=True,
              AllSpectra=True)

    ConvertUnits(InputWorkspace=van_corrected,
                 OutputWorkspace=van_corrected,
                 Target='MomentumTransfer',
                 EMode='Elastic')

    vanadium_title += '_smoothed'
    save_banks(InputWorkspace=van_corrected,
               Filename=nexus_filename,
               Title=vanadium_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Inelastic correction
    if van_inelastic_corr['Type'] == "Placzek":
        van_scan = van['Runs'][0]
        van_incident_wksp = 'van_incident_wksp'
        van_inelastic_opts = van['InelasticCorrection']
        lambda_binning_fit = van_inelastic_opts['LambdaBinningForFit']
        lambda_binning_calc = van_inelastic_opts['LambdaBinningForCalc']
        print('van_scan:', van_scan)
        GetIncidentSpectrumFromMonitor(Filename=facility_file_format %
                                       (instr, van_scan),
                                       OutputWorkspace=van_incident_wksp)

        fit_type = van['InelasticCorrection']['FitSpectrumWith']
        FitIncidentSpectrum(InputWorkspace=van_incident_wksp,
                            OutputWorkspace=van_incident_wksp,
                            FitSpectrumWith=fit_type,
                            BinningForFit=lambda_binning_fit,
                            BinningForCalc=lambda_binning_calc,
                            PlotDiagnostics=False)

        van_placzek = 'van_placzek'

        SetSample(InputWorkspace=van_incident_wksp,
                  Material={
                      'ChemicalFormula': str(van_material),
                      'SampleMassDensity': str(van_mass_density)
                  })

        CalculatePlaczekSelfScattering(IncidentWorkspace=van_incident_wksp,
                                       ParentWorkspace=van_corrected,
                                       OutputWorkspace=van_placzek,
                                       L1=19.5,
                                       L2=alignAndFocusArgs['L2'],
                                       Polar=alignAndFocusArgs['Polar'])

        ConvertToHistogram(InputWorkspace=van_placzek,
                           OutputWorkspace=van_placzek)

        # Save before rebin in Q
        for wksp in [van_placzek, van_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='MomentumTransfer',
                         EMode='Elastic')

            Rebin(InputWorkspace=wksp,
                  OutputWorkspace=wksp,
                  Params=binning,
                  PreserveEvents=True)

        save_banks(InputWorkspace=van_placzek,
                   Filename=nexus_filename,
                   Title="vanadium_placzek",
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

        # Rebin in Wavelength
        for wksp in [van_placzek, van_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='Wavelength',
                         EMode='Elastic')
            Rebin(InputWorkspace=wksp,
                  OutputWorkspace=wksp,
                  Params=lambda_binning_calc,
                  PreserveEvents=True)

        # Save after rebin in Q
        for wksp in [van_placzek, van_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='MomentumTransfer',
                         EMode='Elastic')

        # Subtract correction in Wavelength
        for wksp in [van_placzek, van_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='Wavelength',
                         EMode='Elastic')
            if not mtd[wksp].isDistribution():
                ConvertToDistribution(wksp)

        Minus(LHSWorkspace=van_corrected,
              RHSWorkspace=van_placzek,
              OutputWorkspace=van_corrected)

        # Save after subtraction
        for wksp in [van_placzek, van_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='MomentumTransfer',
                         EMode='Elastic')

        vanadium_title += '_placzek_corrected'
        save_banks(InputWorkspace=van_corrected,
                   Filename=nexus_filename,
                   Title=vanadium_title,
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

    ConvertUnits(InputWorkspace=van_corrected,
                 OutputWorkspace=van_corrected,
                 Target='MomentumTransfer',
                 EMode='Elastic')

    SetUncertainties(InputWorkspace=van_corrected,
                     OutputWorkspace=van_corrected,
                     SetError='zero')

    # STEP 2.1: Normalize by Vanadium

    wksp_list = [sam_wksp, sam_raw, van_corrected]
    for name in wksp_list:
        ConvertUnits(InputWorkspace=name,
                     OutputWorkspace=name,
                     Target='MomentumTransfer',
                     EMode='Elastic',
                     ConvertFromPointData=False)

        Rebin(InputWorkspace=name,
              OutputWorkspace=name,
              Params=binning,
              PreserveEvents=True)

    # Save the sample - back / normalized
    Divide(LHSWorkspace=sam_wksp,
           RHSWorkspace=van_corrected,
           OutputWorkspace=sam_wksp)

    sample_title += "_normalized"
    save_banks(InputWorkspace=sam_wksp,
               Filename=nexus_filename,
               Title=sample_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Save the sample / normalized (ie no background subtraction)
    Divide(LHSWorkspace=sam_raw,
           RHSWorkspace=van_corrected,
           OutputWorkspace=sam_raw)

    save_banks(InputWorkspace=sam_raw,
               Filename=nexus_filename,
               Title="sample_normalized",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Output an initial I(Q) for sample
    iq_filename = title + '_initial_iofq_banks.nxs'
    save_banks(InputWorkspace=sam_wksp,
               Filename=iq_filename,
               Title="IQ_banks",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    wksp_list = [container, container_raw, van_corrected]
    if container_bg is not None:
        wksp_list.append(container_bg)
    if van_bg is not None:
        wksp_list.append(van_bg)

    for name in wksp_list:
        ConvertUnits(InputWorkspace=name,
                     OutputWorkspace=name,
                     Target='MomentumTransfer',
                     EMode='Elastic',
                     ConvertFromPointData=False)

        Rebin(InputWorkspace=name,
              OutputWorkspace=name,
              Params=binning,
              PreserveEvents=True)

    # Save the container - container_background / normalized
    Divide(LHSWorkspace=container,
           RHSWorkspace=van_corrected,
           OutputWorkspace=container)

    container_title += '_normalized'
    save_banks(InputWorkspace=container,
               Filename=nexus_filename,
               Title=container_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Save the container / normalized (ie no background subtraction)
    Divide(LHSWorkspace=container_raw,
           RHSWorkspace=van_corrected,
           OutputWorkspace=container_raw)

    save_banks(InputWorkspace=container_raw,
               Filename=nexus_filename,
               Title="container_normalized",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Save the container_background / normalized
    if container_bg is not None:
        Divide(LHSWorkspace=container_bg,
               RHSWorkspace=van_corrected,
               OutputWorkspace=container_bg)

        container_bg_title = "container_back_normalized"
        save_banks(InputWorkspace=container_bg,
                   Filename=nexus_filename,
                   Title=container_bg_title,
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

    # Save the vanadium_background / normalized
    if van_bg is not None:
        Divide(LHSWorkspace=van_bg,
               RHSWorkspace=van_corrected,
               OutputWorkspace=van_bg)

        vanadium_bg_title += "_normalized"
        save_banks(InputWorkspace=van_bg,
                   Filename=nexus_filename,
                   Title=vanadium_bg_title,
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

    # STEP 3 & 4: Subtract multiple scattering and apply absorption correction

    ConvertUnits(InputWorkspace=sam_wksp,
                 OutputWorkspace=sam_wksp,
                 Target="Wavelength",
                 EMode="Elastic")

    sam_corrected = 'sam_corrected'
    if sam_abs_corr and sam_ms_corr:
        if sam_abs_corr['Type'] == 'Carpenter' \
                or sam_ms_corr['Type'] == 'Carpenter':
            CarpenterSampleCorrection(
                InputWorkspace=sam_wksp,
                OutputWorkspace=sam_corrected,
                CylinderSampleRadius=sample['Geometry']['Radius'])
        elif sam_abs_corr['Type'] == 'Mayers' \
                or sam_ms_corr['Type'] == 'Mayers':
            if sam_ms_corr['Type'] == 'Mayers':
                MayersSampleCorrection(InputWorkspace=sam_wksp,
                                       OutputWorkspace=sam_corrected,
                                       MultipleScattering=True)
            else:
                MayersSampleCorrection(InputWorkspace=sam_wksp,
                                       OutputWorkspace=sam_corrected,
                                       MultipleScattering=False)
        else:
            print("NO SAMPLE absorption or multiple scattering!")
            CloneWorkspace(InputWorkspace=sam_wksp,
                           OutputWorkspace=sam_corrected)

        ConvertUnits(InputWorkspace=sam_corrected,
                     OutputWorkspace=sam_corrected,
                     Target='MomentumTransfer',
                     EMode='Elastic')

        sample_title += "_ms_abs_corrected"
        save_banks(InputWorkspace=sam_corrected,
                   Filename=nexus_filename,
                   Title=sample_title,
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)
    else:
        CloneWorkspace(InputWorkspace=sam_wksp, OutputWorkspace=sam_corrected)

    # STEP 5: Divide by number of atoms in sample

    mtd[sam_corrected] = (nvan_atoms / natoms) * mtd[sam_corrected]
    ConvertUnits(InputWorkspace=sam_corrected,
                 OutputWorkspace=sam_corrected,
                 Target='MomentumTransfer',
                 EMode='Elastic')

    sample_title += "_norm_by_atoms"
    save_banks(InputWorkspace=sam_corrected,
               Filename=nexus_filename,
               Title=sample_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # STEP 6: Divide by total scattering length squared = total scattering
    # cross-section over 4 * pi
    van_material = mtd[van_corrected].sample().getMaterial()
    sigma_v = van_material.totalScatterXSection()
    prefactor = (sigma_v / (4. * np.pi))
    msg = "Total scattering cross-section of Vanadium:{} sigma_v / 4*pi: {}"
    print(msg.format(sigma_v, prefactor))

    mtd[sam_corrected] = prefactor * mtd[sam_corrected]
    sample_title += '_multiply_by_vanSelfScat'
    save_banks(InputWorkspace=sam_corrected,
               Filename=nexus_filename,
               Title=sample_title,
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # STEP 7: Inelastic correction
    ConvertUnits(InputWorkspace=sam_corrected,
                 OutputWorkspace=sam_corrected,
                 Target='Wavelength',
                 EMode='Elastic')

    if sam_inelastic_corr['Type'] == "Placzek":
        if sam_material is None:
            error = "For Placzek correction, must specifiy a sample material."
            raise Exception(error)
        for sam_scan in sample['Runs']:
            sam_incident_wksp = 'sam_incident_wksp'
            sam_inelastic_opts = sample['InelasticCorrection']
            lambda_binning_fit = sam_inelastic_opts['LambdaBinningForFit']
            lambda_binning_calc = sam_inelastic_opts['LambdaBinningForCalc']
            GetIncidentSpectrumFromMonitor(Filename=facility_file_format %
                                           (instr, sam_scan),
                                           OutputWorkspace=sam_incident_wksp)

            fit_type = sample['InelasticCorrection']['FitSpectrumWith']
            FitIncidentSpectrum(InputWorkspace=sam_incident_wksp,
                                OutputWorkspace=sam_incident_wksp,
                                FitSpectrumWith=fit_type,
                                BinningForFit=lambda_binning_fit,
                                BinningForCalc=lambda_binning_calc)

            sam_placzek = 'sam_placzek'
            SetSample(InputWorkspace=sam_incident_wksp,
                      Material={
                          'ChemicalFormula': str(sam_material),
                          'SampleMassDensity': str(sam_mass_density)
                      })
            CalculatePlaczekSelfScattering(IncidentWorkspace=sam_incident_wksp,
                                           ParentWorkspace=sam_corrected,
                                           OutputWorkspace=sam_placzek,
                                           L1=19.5,
                                           L2=alignAndFocusArgs['L2'],
                                           Polar=alignAndFocusArgs['Polar'])

            ConvertToHistogram(InputWorkspace=sam_placzek,
                               OutputWorkspace=sam_placzek)

        # Save before rebin in Q
        for wksp in [sam_placzek, sam_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='MomentumTransfer',
                         EMode='Elastic')

            Rebin(InputWorkspace=wksp,
                  OutputWorkspace=wksp,
                  Params=binning,
                  PreserveEvents=True)

        save_banks(InputWorkspace=sam_placzek,
                   Filename=nexus_filename,
                   Title="sample_placzek",
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

        # Save after rebin in Q
        for wksp in [sam_placzek, sam_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='MomentumTransfer',
                         EMode='Elastic')

        Minus(LHSWorkspace=sam_corrected,
              RHSWorkspace=sam_placzek,
              OutputWorkspace=sam_corrected)

        # Save after subtraction
        for wksp in [sam_placzek, sam_corrected]:
            ConvertUnits(InputWorkspace=wksp,
                         OutputWorkspace=wksp,
                         Target='MomentumTransfer',
                         EMode='Elastic')

        sample_title += '_placzek_corrected'
        save_banks(InputWorkspace=sam_corrected,
                   Filename=nexus_filename,
                   Title=sample_title,
                   OutputDir=OutputDir,
                   GroupingWorkspace=grp_wksp,
                   Binning=binning)

    # STEP 7: Output spectrum

    # TODO Since we already went from Event -> 2D workspace, can't use this
    # anymore
    print('sam:', mtd[sam_corrected].id())
    print('van:', mtd[van_corrected].id())
    if alignAndFocusArgs['PreserveEvents']:
        CompressEvents(InputWorkspace=sam_corrected,
                       OutputWorkspace=sam_corrected)

    # F(Q) bank-by-bank Section
    fq_banks_wksp = "FQ_banks_wksp"
    CloneWorkspace(InputWorkspace=sam_corrected, OutputWorkspace=fq_banks_wksp)
    # TODO: Add the following when implemented - FQ_banks = 'FQ_banks'

    # S(Q) bank-by-bank Section
    material = mtd[sam_corrected].sample().getMaterial()
    if material.name() is None or len(material.name().strip()) == 0:
        raise RuntimeError('Sample material was not set')
    bcoh_avg_sqrd = material.cohScatterLength() * material.cohScatterLength()
    btot_sqrd_avg = material.totalScatterLengthSqrd()
    laue_monotonic_diffuse_scat = btot_sqrd_avg / bcoh_avg_sqrd
    sq_banks_wksp = 'SQ_banks_wksp'
    CloneWorkspace(InputWorkspace=sam_corrected, OutputWorkspace=sq_banks_wksp)

    # TODO: Add the following when implemented
    '''
    SQ_banks = (1. / bcoh_avg_sqrd) * \
        mtd[sq_banks_wksp] - laue_monotonic_diffuse_scat + 1.
    '''

    # Save S(Q) and F(Q) to diagnostics NeXus file
    save_banks(InputWorkspace=fq_banks_wksp,
               Filename=nexus_filename,
               Title="FQ_banks",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    save_banks(InputWorkspace=sq_banks_wksp,
               Filename=nexus_filename,
               Title="SQ_banks",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Output a main S(Q) and F(Q) file
    fq_filename = title + '_fofq_banks_corrected.nxs'
    save_banks(InputWorkspace=fq_banks_wksp,
               Filename=fq_filename,
               Title="FQ_banks",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    sq_filename = title + '_sofq_banks_corrected.nxs'
    save_banks(InputWorkspace=sq_banks_wksp,
               Filename=sq_filename,
               Title="SQ_banks",
               OutputDir=OutputDir,
               GroupingWorkspace=grp_wksp,
               Binning=binning)

    # Print log information
    print("<b>^2:", bcoh_avg_sqrd)
    print("<b^2>:", btot_sqrd_avg)
    print("Laue term:", laue_monotonic_diffuse_scat)
    print("sample total xsection:",
          mtd[sam_corrected].sample().getMaterial().totalScatterXSection())
    print("vanadium total xsection:",
          mtd[van_corrected].sample().getMaterial().totalScatterXSection())

    # Output Bragg Diffraction
    ConvertUnits(InputWorkspace=sam_corrected,
                 OutputWorkspace=sam_corrected,
                 Target="TOF",
                 EMode="Elastic")

    ConvertToHistogram(InputWorkspace=sam_corrected,
                       OutputWorkspace=sam_corrected)

    xmin, xmax = get_each_spectra_xmin_xmax(mtd[sam_corrected])

    CropWorkspaceRagged(InputWorkspace=sam_corrected,
                        OutputWorkspace=sam_corrected,
                        Xmin=xmin,
                        Xmax=xmax)

    xmin_rebin = min(xmin)
    xmax_rebin = max(xmax)
    tof_binning = "{xmin},-0.01,{xmax}".format(xmin=xmin_rebin,
                                               xmax=xmax_rebin)

    Rebin(InputWorkspace=sam_corrected,
          OutputWorkspace=sam_corrected,
          Params=tof_binning)

    SaveGSS(InputWorkspace=sam_corrected,
            Filename=os.path.join(os.path.abspath(OutputDir), title + ".gsa"),
            SplitFiles=False,
            Append=False,
            MultiplyByBinWidth=True,
            Format="SLOG",
            ExtendedHeader=True)

    return mtd[sam_corrected]
Exemplo n.º 5
0
def process_json(json_filename):
    """This will read a json file, process the data and save the calibration.

    Only ``Calibrant`` and ``Groups`` are required.

    An example input showing every possible options is:

    .. code-block:: JSON

      {
        "Calibrant": "12345",
        "Groups": "/path/to/groups.xml",
        "Mask": "/path/to/mask.xml",
        "Instrument": "NOM",
        "Date" : "2019_09_04",
        "SampleEnvironment": "shifter",
        "PreviousCalibration": "/path/to/cal.h5",
        "CalDirectory": "/path/to/output_directory",
        "CrossCorrelate": {"Step": 0.001,
                           "DReference: 1.5,
                           "Xmin": 1.0,
                           "Xmax": 3.0,
                           "MaxDSpaceShift": 0.25},
        "PDCalibration": {"PeakPositions": [1, 2, 3],
                          "TofBinning": (300,0.001,16666),
                          "PeakFunction": 'Gaussian',
                          "PeakWindow": 0.1,
                          "PeakWidthPercent": 0.001}
      }
    """
    with open(json_filename) as json_file:
        args = json.load(json_file)

    calibrant_file = args.get('CalibrantFile', None)
    if calibrant_file is None:
        calibrant = args['Calibrant']
    groups = args['Groups']
    out_groups_by = args.get('OutputGroupsBy', 'Group')
    sample_env = args.get('SampleEnvironment', 'UnknownSampleEnvironment')
    mask = args.get('Mask')
    instrument = args.get('Instrument', 'NOM')
    cc_kwargs = args.get('CrossCorrelate', {})
    pdcal_kwargs = args.get('PDCalibration', {})
    previous_calibration = args.get('PreviousCalibration')

    date = str(args.get('Date', datetime.datetime.now().strftime('%Y_%m_%d')))
    caldirectory = str(args.get('CalDirectory', os.path.abspath('.')))

    if calibrant_file is not None:
        ws = Load(calibrant_file)
        calibrant = ws.getRun().getProperty('run_number').value
    else:
        filename = f'{instrument}_{calibrant}'
        ws = Load(filename)

    calfilename = f'{caldirectory}/{instrument}_{calibrant}_{date}_{sample_env}.h5'
    logger.notice(f'going to create calibration file: {calfilename}')

    groups = LoadDetectorsGroupingFile(groups, InputWorkspace=ws)

    if mask:
        mask = LoadMask(instrument, mask)
        MaskDetectors(ws, MaskedWorkspace=mask)

    if previous_calibration:
        previous_calibration = LoadDiffCal(previous_calibration,
                                           MakeGroupingWorkspace=False,
                                           MakeMaskWorkspace=False)

    diffcal = do_group_calibration(ws,
                                   groups,
                                   previous_calibration,
                                   cc_kwargs=cc_kwargs,
                                   pdcal_kwargs=pdcal_kwargs)
    mask = mtd['group_calibration_pd_diffcal_mask']

    CreateGroupingWorkspace(InputWorkspace=ws,
                            GroupDetectorsBy=out_groups_by,
                            OutputWorkspace='out_groups')
    SaveDiffCal(CalibrationWorkspace=diffcal,
                MaskWorkspace=mask,
                GroupingWorkspace=mtd['out_groups'],
                Filename=calfilename)
Exemplo n.º 6
0
    def PyExec(self):
        in_Runs = self.getProperty("RunNumbers").value
        progress = Progress(self, 0., .25, 3)
        finalUnits = self.getPropertyValue("FinalUnits")
        self.chunkSize = self.getProperty('MaxChunkSize').value

        # default arguments for AlignAndFocusPowder
        self.alignAndFocusArgs = {'Tmin': 0,
                                  'TMax': 50000,
                                  'RemovePromptPulseWidth': 1600,
                                  'PreserveEvents': False,
                                  'Dspacing': True,  # binning parameters in d-space
                                  'Params': self.getProperty("Binning").value,
                                  }

        # workspace for loading metadata only to be used in LoadDiffCal and
        # CreateGroupingWorkspace
        metaWS = None

        # either type of file-based calibration is stored in the same variable
        calib = self.getProperty("Calibration").value
        detcalFile = None
        if calib == "Calibration File":
            metaWS = self._loadMetaWS(in_Runs[0])
            LoadDiffCal(Filename=self.getPropertyValue("CalibrationFilename"),
                        WorkspaceName='SNAP',
                        InputWorkspace=metaWS,
                        MakeGroupingWorkspace=False, MakeMaskWorkspace=False)
            self.alignAndFocusArgs['CalibrationWorkspace'] = 'SNAP_cal'
        elif calib == 'DetCal File':
            detcalFile = ','.join(self.getProperty('DetCalFilename').value)
        progress.report('loaded calibration')

        norm = self.getProperty("Normalization").value

        if norm == "From Processed Nexus":
            norm_File = self.getProperty("NormalizationFilename").value
            normalizationWS = 'normWS'
            LoadNexusProcessed(Filename=norm_File, OutputWorkspace=normalizationWS)
            progress.report('loaded normalization')
        elif norm == "From Workspace":
            normalizationWS = str(self.getProperty("NormalizationWorkspace").value)
            progress.report('')
        else:
            normalizationWS = None
            progress.report('')

        self.alignAndFocusArgs['GroupingWorkspace'] = self._generateGrouping(in_Runs[0], metaWS, progress)
        self.alignAndFocusArgs['MaskWorkspace'] = self._getMaskWSname(in_Runs[0], metaWS)  # can be empty string

        if metaWS is not None:
            DeleteWorkspace(Workspace=metaWS)

        Process_Mode = self.getProperty("ProcessingMode").value

        prefix = self.getProperty("OptionalPrefix").value

        Tag = 'SNAP'
        progStart = .25
        progDelta = (1.-progStart)/len(in_Runs)

        # --------------------------- PROCESS BACKGROUND ----------------------
        if not self.getProperty('Background').isDefault:
            progDelta = (1. - progStart) / (len(in_Runs) + 1)  # redefine to account for background

            background = 'SNAP_{}'.format(self.getProperty('Background').value)
            self.log().notice("processing run background {}".format(background))
            background, unfocussedBkgd = self._alignAndFocus(background,
                                                             background+'_bkgd_red',
                                                             detCalFilename=detcalFile,
                                                             withUnfocussed=(Process_Mode == 'Set-Up'),
                                                             progStart=progStart, progDelta=progDelta)
        else:
            background = None
            unfocussedBkgd = ''

        # --------------------------- REDUCE DATA -----------------------------

        for i, runnumber in enumerate(in_Runs):
            self.log().notice("processing run %s" % runnumber)

            # put together output names
            new_Tag = Tag
            if len(prefix) > 0:
                new_Tag = prefix + '_' + new_Tag
            basename = '%s_%s_%s' % (new_Tag, runnumber, self.alignAndFocusArgs['GroupingWorkspace'])
            self.log().warning('{}:{}:{}'.format(i, new_Tag, basename))
            redWS, unfocussedWksp = self._alignAndFocus('SNAP_{}'.format(runnumber),
                                                        basename + '_red',
                                                        detCalFilename=detcalFile,
                                                        withUnfocussed=(Process_Mode == 'Set-Up'),
                                                        progStart=progStart, progDelta=progDelta*.5)
            progStart += .5 * progDelta

            # subtract the background if it was supplied
            if background:
                self.log().information('subtracting {} from {}'.format(background, redWS))
                Minus(LHSWorkspace=redWS, RHSWorkspace=background, OutputWorkspace=redWS)
                # intentionally don't subtract the unfocussed workspace since it hasn't been normalized by counting time

            # the rest takes up .25 percent of the run processing
            progress = Progress(self, progStart, progStart+.25*progDelta, 2)

            # AlignAndFocusPowder leaves the data in time-of-flight
            ConvertUnits(InputWorkspace=redWS, OutputWorkspace=redWS, Target='dSpacing', EMode='Elastic')

            # Edit instrument geometry to make final workspace smaller on disk
            det_table = PreprocessDetectorsToMD(Inputworkspace=redWS,
                                                OutputWorkspace='__SNAP_det_table')
            polar = np.degrees(det_table.column('TwoTheta'))
            azi = np.degrees(det_table.column('Azimuthal'))
            EditInstrumentGeometry(Workspace=redWS, L2=det_table.column('L2'),
                                   Polar=polar, Azimuthal=azi)
            mtd.remove('__SNAP_det_table')
            progress.report('simplify geometry')

            # AlignAndFocus doesn't necessarily rebin the data correctly
            if Process_Mode == "Set-Up":
                Rebin(InputWorkspace=unfocussedWksp, Params=self.alignAndFocusArgs['Params'],
                      Outputworkspace=unfocussedWksp)
                if background:
                    Rebin(InputWorkspace=unfocussedBkgd, Params=self.alignAndFocusArgs['Params'],
                          Outputworkspace=unfocussedBkgd)
            # normalize the data as requested
            normalizationWS = self._generateNormalization(redWS, norm, normalizationWS)
            normalizedWS = None
            if normalizationWS is not None:
                normalizedWS = basename + '_nor'
                Divide(LHSWorkspace=redWS, RHSWorkspace=normalizationWS,
                       OutputWorkspace=normalizedWS)
                ReplaceSpecialValues(Inputworkspace=normalizedWS,
                                     OutputWorkspace=normalizedWS,
                                     NaNValue='0', NaNError='0',
                                     InfinityValue='0', InfinityError='0')
                progress.report('normalized')
            else:
                progress.report()

            # rename everything as appropriate and determine output workspace name
            if normalizedWS is None:
                outputWksp = redWS
            else:
                outputWksp = normalizedWS

                if norm == "Extracted from Data" and Process_Mode == "Production":
                        DeleteWorkspace(Workspace=redWS)
                        DeleteWorkspace(Workspace=normalizationWS)

            # Save requested formats - function checks that saving is requested
            self._save(runnumber, basename, outputWksp)

            # set workspace as an output so it gets history
            ConvertUnits(InputWorkspace=str(outputWksp), OutputWorkspace=str(outputWksp), Target=finalUnits,
                         EMode='Elastic')
            self._exportWorkspace('OutputWorkspace_' + str(outputWksp), outputWksp)

            # declare some things as extra outputs in set-up
            if Process_Mode != "Production":
                propprefix = 'OutputWorkspace_{:d}_'.format(i)
                propNames = [propprefix + it for it in ['d', 'norm', 'normalizer']]
                wkspNames = ['%s_%s_d' % (new_Tag, runnumber),
                             basename + '_red',
                             '%s_%s_normalizer' % (new_Tag, runnumber)]
                for (propName, wkspName) in zip(propNames, wkspNames):
                    self._exportWorkspace(propName, wkspName)

        if background:
            ConvertUnits(InputWorkspace=str(background), OutputWorkspace=str(background), Target=finalUnits,
                         EMode='Elastic')
            prefix = 'OutputWorkspace_{}'.format(len(in_Runs))
            propNames = [prefix + it for it in ['', '_d']]
            wkspNames = [background, unfocussedBkgd]
            for (propName, wkspName) in zip(propNames, wkspNames):
                self._exportWorkspace(propName, wkspName)
Exemplo n.º 7
0
tube.readCalibrationFile(
    'CalibTable', '/SNS/users/rwp/corelli/tube_calibration/CalibTableNew.txt')

corelli = LoadEmptyInstrument(InstrumentName='CORELLI')
corelli = CalculateDIFC(corelli)
difc0 = corelli.extractY().flatten()
ApplyCalibration('corelli', 'CalibTable')
corelli = CalculateDIFC(corelli)
difc = corelli.extractY().flatten()

plt.plot(difc / difc0)
plt.show()

LoadDiffCal(
    Filename='../cal_Si_C60/cal_Si2_47327-47334_TubeCal_sum16_mask_lt_2.cal',
    InstrumentName='CORELLI',
    WorkspaceName='si')
MaskBTP(Workspace='si_mask', Pixel="1-16,241-256")

LoadDiffCal(
    Filename='../cal_Si_C60/cal_C60_2_47367-47382_TubeCal_sum16_mask_lt_2.h5',
    InstrumentName='CORELLI',
    WorkspaceName='c60')
MaskBTP(Workspace='c60_mask', Pixel="1-16,241-256")

si = mtd['si_cal']
c60 = mtd['c60_cal']
si_mask = mtd['si_mask']
c60_mask = mtd['c60_mask']

plt.plot(corelli.extractY())
Exemplo n.º 8
0
    fig, ax = plt.subplots()
    ax.add_collection(p)
    mp = PatchCollection(masked_patches)
    mp.set_facecolor('gray')
    mp.set_edgecolor('face')
    ax.add_collection(mp)
    fig.colorbar(p, ax=ax)
    ax.set_xlabel(r'$\phi$')
    ax.set_xlim(0.0, np.pi)
    ax.set_ylabel(r'$\theta$')
    ax.set_ylim(-np.pi, np.pi)
    return fig, ax


#Input for NOMAD
LoadDiffCal(
    InstrumentName='NOMAD',
    Filename=
    '/SNS/NOM/shared/CALIBRATION/2019_1_1B_CAL/NOM_calibrate_d122825_2019_01_17.h5',
    WorkspaceName='NOM')
mask = mtd['NOM_mask']

#Input for POWGEN
#LoadDiffCal(InstrumentName='POWGEN',
#            Filename='/SNS/PG3/shared/CALIBRATION/2019_1_11A_CAL/PG3_PAC_d2817_2019_01_22.h5',
#            WorkspaceName='PG3')
#mask = mtd['PG3_mask']

fig, ax = PlotCalibration('NOM_group', 'NOM_cal', mask)
plt.show()
Exemplo n.º 9
0
    def PyExec(self):
        in_Runs = self.getProperty("RunNumbers").value
        maskWSname = self._getMaskWSname()
        progress = Progress(self, 0., .25, 3)

        # default arguments for AlignAndFocusPowder
        alignAndFocusArgs = {
            'TMax': 50000,
            'RemovePromptPulseWidth': 1600,
            'PreserveEvents': False,
            'Dspacing': True,  # binning parameters in d-space
            'Params': self.getProperty("Binning").value
        }

        # workspace for loading metadata only to be used in LoadDiffCal and
        # CreateGroupingWorkspace
        metaWS = None

        # either type of file-based calibration is stored in the same variable
        calib = self.getProperty("Calibration").value
        detcalFile = None
        if calib == "Calibration File":
            metaWS = self._loadMetaWS(in_Runs[0])
            LoadDiffCal(Filename=self.getPropertyValue("CalibrationFilename"),
                        WorkspaceName='SNAP',
                        InputWorkspace=metaWS,
                        MakeGroupingWorkspace=False,
                        MakeMaskWorkspace=False)
            alignAndFocusArgs['CalibrationWorkspace'] = 'SNAP_cal'
        elif calib == 'DetCal File':
            detcalFile = ','.join(self.getProperty('DetCalFilename').value)
        progress.report('loaded calibration')

        norm = self.getProperty("Normalization").value

        if norm == "From Processed Nexus":
            norm_File = self.getProperty("NormalizationFilename").value
            normalizationWS = 'normWS'
            LoadNexusProcessed(Filename=norm_File,
                               OutputWorkspace=normalizationWS)
            progress.report('loaded normalization')
        elif norm == "From Workspace":
            normalizationWS = str(
                self.getProperty("NormalizationWorkspace").value)
            progress.report('')
        else:
            normalizationWS = None
            progress.report('')

        group = self._generateGrouping(in_Runs[0], metaWS, progress)

        if metaWS is not None:
            DeleteWorkspace(Workspace=metaWS)

        Process_Mode = self.getProperty("ProcessingMode").value

        prefix = self.getProperty("OptionalPrefix").value

        # --------------------------- REDUCE DATA -----------------------------

        Tag = 'SNAP'
        if self.getProperty("LiveData").value:
            Tag = 'Live'

        progStart = .25
        progDelta = (1. - progStart) / len(in_Runs)
        for i, runnumber in enumerate(in_Runs):
            self.log().notice("processing run %s" % runnumber)
            self.log().information(str(self.get_IPTS_Local(runnumber)))

            # put together output names
            new_Tag = Tag
            if len(prefix) > 0:
                new_Tag += '_' + prefix
            basename = '%s_%s_%s' % (new_Tag, runnumber, group)

            if self.getProperty("LiveData").value:
                raise RuntimeError('Live data is not currently supported')
            else:
                Load(Filename='SNAP' + str(runnumber),
                     OutputWorkspace=basename + '_red',
                     startProgress=progStart,
                     endProgress=progStart + .25 * progDelta)
                progStart += .25 * progDelta
            redWS = basename + '_red'

            # overwrite geometry with detcal files
            if calib == 'DetCal File':
                LoadIsawDetCal(InputWorkspace=redWS, Filename=detcalFile)

            # create unfocussed data if in set-up mode
            if Process_Mode == "Set-Up":
                unfocussedWksp = '{}_{}_d'.format(new_Tag, runnumber)
            else:
                unfocussedWksp = ''

            AlignAndFocusPowder(
                InputWorkspace=redWS,
                OutputWorkspace=redWS,
                MaskWorkspace=maskWSname,  # can be empty string
                GroupingWorkspace=group,
                UnfocussedWorkspace=unfocussedWksp,  # can be empty string
                startProgress=progStart,
                endProgress=progStart + .5 * progDelta,
                **alignAndFocusArgs)
            progStart += .5 * progDelta

            # the rest takes up .25 percent of the run processing
            progress = Progress(self, progStart, progStart + .25 * progDelta,
                                2)

            # AlignAndFocusPowder leaves the data in time-of-flight
            ConvertUnits(InputWorkspace=redWS,
                         OutputWorkspace=redWS,
                         Target='dSpacing',
                         EMode='Elastic')

            # Edit instrument geometry to make final workspace smaller on disk
            det_table = PreprocessDetectorsToMD(
                Inputworkspace=redWS, OutputWorkspace='__SNAP_det_table')
            polar = np.degrees(det_table.column('TwoTheta'))
            azi = np.degrees(det_table.column('Azimuthal'))
            EditInstrumentGeometry(Workspace=redWS,
                                   L2=det_table.column('L2'),
                                   Polar=polar,
                                   Azimuthal=azi)
            mtd.remove('__SNAP_det_table')
            progress.report('simplify geometry')

            # AlignAndFocus doesn't necessarily rebin the data correctly
            if Process_Mode == "Set-Up":
                Rebin(InputWorkspace=unfocussedWksp,
                      Params=alignAndFocusArgs['Params'],
                      Outputworkspace=unfocussedWksp)

            NormaliseByCurrent(InputWorkspace=redWS, OutputWorkspace=redWS)

            # normalize the data as requested
            normalizationWS = self._generateNormalization(
                redWS, norm, normalizationWS)
            normalizedWS = None
            if normalizationWS is not None:
                normalizedWS = basename + '_nor'
                Divide(LHSWorkspace=redWS,
                       RHSWorkspace=normalizationWS,
                       OutputWorkspace=normalizedWS)
                ReplaceSpecialValues(Inputworkspace=normalizedWS,
                                     OutputWorkspace=normalizedWS,
                                     NaNValue='0',
                                     NaNError='0',
                                     InfinityValue='0',
                                     InfinityError='0')
                progress.report('normalized')
            else:
                progress.report()

            # rename everything as appropriate and determine output workspace name
            if normalizedWS is None:
                outputWksp = redWS
            else:
                outputWksp = normalizedWS

                if norm == "Extracted from Data" and Process_Mode == "Production":
                    DeleteWorkspace(Workspace=redWS)
                    DeleteWorkspace(Workspace=normalizationWS)

            # Save requested formats
            saveDir = self.getPropertyValue("OutputDirectory").strip()
            if len(saveDir) <= 0:
                self.log().notice('Using default save location')
                saveDir = os.path.join(self.get_IPTS_Local(runnumber),
                                       'shared', 'data')
            self._save(saveDir, basename, outputWksp)

            # set workspace as an output so it gets history
            propertyName = 'OutputWorkspace_' + str(outputWksp)
            self.declareProperty(
                WorkspaceProperty(propertyName, outputWksp, Direction.Output))
            self.setProperty(propertyName, outputWksp)

            # declare some things as extra outputs in set-up
            if Process_Mode != "Production":
                prefix = 'OuputWorkspace_{:d}_'.format(i)
                propNames = [prefix + it for it in ['d', 'norm', 'normalizer']]
                wkspNames = [
                    '%s_%s_d' % (new_Tag, runnumber), basename + '_red',
                    '%s_%s_normalizer' % (new_Tag, runnumber)
                ]
                for (propName, wkspName) in zip(propNames, wkspNames):
                    if mtd.doesExist(wkspName):
                        self.declareProperty(
                            WorkspaceProperty(propName, wkspName,
                                              Direction.Output))
                        self.setProperty(propName, wkspName)
Exemplo n.º 10
0
from mantid.simpleapi import Load, LoadDiffCal
import scippneutron as scn

ws = Load('PG3_4844_event.nxs')
ws = LoadDiffCal('PG3_golden.cal', InputWorkspace='ws', WorkspaceName='ws')
cal = scn.from_mantid(ws[0]).rename_dims({'row': 'spectrum'})
cal['tzero'].unit = 'us'
cal['difc'].unit = 'us/angstrom'
cal['difa'].unit = 'us/(angstrom*angstrom)'
cal.to_hdf5('PG3_4844_calibration.h5')