def runTest(self):
     # Load raw data (bank 1)
     wsMD = LoadMD(
         "WISH38237_MD.nxs")  # default so doesn't get overwrite van
     # For each mod vec, predict and integrate peaks and combine
     qs = [(0.15, 0, 0.3), (-0.15, 0, 0.3)]
     all_pks = CreatePeaksWorkspace(InstrumentWorkspace=wsMD,
                                    NumberOfPeaks=0,
                                    OutputWorkspace="all_pks")
     LoadIsawUB(InputWorkspace=all_pks,
                Filename='Wish_Diffuse_Scattering_ISAW_UB.mat')
     # PredictPeaks
     parent = PredictPeaks(InputWorkspace=all_pks,
                           WavelengthMin=0.8,
                           WavelengthMax=9.3,
                           MinDSpacing=0.5,
                           ReflectionCondition="Primitive")
     self._pfps = []
     self._saved_files = []
     for iq, q in enumerate(qs):
         wsname = f'pfp_{iq}'
         PredictFractionalPeaks(Peaks=parent,
                                IncludeAllPeaksInRange=True,
                                Hmin=0,
                                Hmax=0,
                                Kmin=1,
                                Kmax=1,
                                Lmin=0,
                                Lmax=1,
                                ReflectionCondition='Primitive',
                                MaxOrder=1,
                                ModVector1=",".join([str(qi) for qi in q]),
                                FracPeaks=wsname)
         FilterPeaks(InputWorkspace=wsname,
                     OutputWorkspace=wsname,
                     FilterVariable='Wavelength',
                     FilterValue=9.3,
                     Operator='<')  # should get rid of one peak in q1 table
         FilterPeaks(InputWorkspace=wsname,
                     OutputWorkspace=wsname,
                     FilterVariable='Wavelength',
                     FilterValue=0.8,
                     Operator='>')
         IntegratePeaksMD(InputWorkspace=wsMD,
                          PeakRadius='0.1',
                          BackgroundInnerRadius='0.1',
                          BackgroundOuterRadius='0.15',
                          PeaksWorkspace=wsname,
                          OutputWorkspace=wsname,
                          IntegrateIfOnEdge=False,
                          UseOnePercentBackgroundCorrection=False)
         all_pks = CombinePeaksWorkspaces(LHSWorkspace=all_pks,
                                          RHSWorkspace=wsname)
         self._pfps.append(ADS.retrieve(wsname))
     self._filepath = os.path.join(config['defaultsave.directory'],
                                   'WISH_IntegratedSatellite.int')
     SaveReflections(InputWorkspace=all_pks,
                     Filename=self._filepath,
                     Format='Jana')
     self._all_pks = all_pks
    def runTest(self):
        ws = LoadRaw(Filename='WISH00038237.raw', OutputWorkspace='38237')
        ws = ConvertUnits(ws, 'dSpacing', OutputWorkspace='38237')
        UB = np.array([[-0.00601763,  0.07397297,  0.05865706],
                       [ 0.05373321,  0.050198,   -0.05651455],
                       [-0.07822144,  0.0295911,  -0.04489172]])

        SetUB(ws, UB=UB)

        self._peaks = PredictPeaks(ws, WavelengthMin=0.1, WavelengthMax=100,
                                   OutputWorkspace='peaks')
        # We specifically want to check peak -5 -1 -7 exists, so filter for it
        self._filtered = FilterPeaks(self._peaks, "h^2+k^2+l^2", 75, '=',
                                     OutputWorkspace='filtered')

        SaveIsawPeaks(self._peaks, Filename='WISHSXReductionPeaksTest.peaks')
    def runTest(self):
        ws = LoadRaw(Filename='WISH00038237.raw', OutputWorkspace='38237')
        ws = ConvertUnits(ws, 'dSpacing', OutputWorkspace='38237')
        UB = np.array([[-0.00601763,  0.07397297,  0.05865706],
                       [ 0.05373321,  0.050198,   -0.05651455],
                       [-0.07822144,  0.0295911,  -0.04489172]])

        SetUB(ws, UB=UB)

        self._peaks = PredictPeaks(ws, WavelengthMin=0.1, WavelengthMax=100,
                                   OutputWorkspace='peaks')
        # We specifically want to check peak -5 -1 -7 exists, so filter for it
        self._filtered = FilterPeaks(self._peaks, "h^2+k^2+l^2", 75, '=',
                                     OutputWorkspace='filtered')

        SaveIsawPeaks(self._peaks, Filename='WISHSXReductionPeaksTest.peaks')
Exemplo n.º 4
0
 def setUp(self):
     # load empty instrument so can create a peak table
     self.ws = LoadEmptyInstrument(InstrumentName='SXD',
                                   OutputWorkspace='sxd')
     ub = np.array([[-0.00601763, 0.07397297, 0.05865706],
                    [0.05373321, 0.050198, -0.05651455],
                    [-0.07822144, 0.0295911, -0.04489172]])
     SetUB(self.ws, UB=ub)
     PredictPeaks(self.ws,
                  WavelengthMin=1,
                  WavelengthMax=1.1,
                  MinDSpacing=1,
                  MaxDSPacing=1.1,
                  OutputWorkspace='test')  # 8 peaks
     PredictSatellitePeaks(Peaks='test',
                           SatellitePeaks='test_sat',
                           ModVector1='0,0,0.33',
                           MaxOrder=1)
     self.peaks = CombinePeaksWorkspaces(LHSWorkspace='test_sat',
                                         RHSWorkspace='test',
                                         OutputWorkspace='test')
class WISHSingleCrystalPeakPredictionTest(MantidSystemTest):
    """
    At the time of writing WISH users rely quite heavily on the PredictPeaks
    algorithm. As WISH has tubes rather than rectangular detectors sometimes
    peaks fall between the gaps in the tubes.

    Here we check that PredictPeaks works on a real WISH dataset & UB. This also
    includes an example of a peak whose center is predicted to fall between two
    tubes.
    """
    def requiredFiles(self):
        return ["WISHPredictedSingleCrystalPeaks.nxs"]

    def cleanup(self):
        ADS.clear()
        try:
            os.remove(self._peaks_file)
        except:
            pass

    def runTest(self):
        ws = LoadEmptyInstrument(InstrumentName='WISH')
        UB = np.array([[-0.00601763, 0.07397297, 0.05865706],
                       [0.05373321, 0.050198, -0.05651455],
                       [-0.07822144, 0.0295911, -0.04489172]])

        SetUB(ws, UB=UB)

        self._peaks = PredictPeaks(ws,
                                   WavelengthMin=0.1,
                                   WavelengthMax=100,
                                   OutputWorkspace='peaks')
        # We specifically want to check peak -5 -1 -7 exists, so filter for it
        self._filtered = FilterPeaks(self._peaks,
                                     "h^2+k^2+l^2",
                                     75,
                                     '=',
                                     OutputWorkspace='filtered')

        SaveIsawPeaks(self._peaks, Filename='WISHSXReductionPeaksTest.peaks')

    def validate(self):
        self.assertEqual(self._peaks.rowCount(), 527)
        self.assertEqual(self._filtered.rowCount(), 7)

        # The peak at [-5 -1 -7] is known to fall between the gaps of WISH's tubes
        # Specifically check this one is predicted to exist because past bugs have
        # been found in the ray tracing.
        BasicPeak = namedtuple('Peak', ('DetID', 'BankName', 'h', 'k', 'l'))
        expected = BasicPeak(DetID=9202086,
                             BankName='WISHpanel09',
                             h=-5.0,
                             k=-1.0,
                             l=-7.0)
        expected_peak_found = False
        peak_count = self._filtered.rowCount()
        for i in range(
                peak_count
        ):  # iterate of the table representation of the PeaksWorkspace
            peak_row = self._filtered.row(i)
            peak = BasicPeak(**{k: peak_row[k] for k in BasicPeak._fields})
            if peak == expected:
                expected_peak_found = True
                break
        self.assertTrue(
            expected_peak_found,
            msg="Peak at {} expected but it was not found".format(expected))
        self._peaks_file = os.path.join(config['defaultsave.directory'],
                                        'WISHSXReductionPeaksTest.peaks')
        self.assertTrue(os.path.isfile(self._peaks_file))

        return self._peaks.name(), "WISHPredictedSingleCrystalPeaks.nxs"
Exemplo n.º 6
0
    def PyExec(self):
        # create peaks workspace to store linked peaks
        linked_peaks = CreatePeaksWorkspace(
            InstrumentWorkspace=self._workspace,
            NumberOfPeaks=0,
            StoreInADS=False)

        # create peaks table to store linked predicted peaks
        linked_peaks_predicted = CreatePeaksWorkspace(
            InstrumentWorkspace=self._workspace,
            NumberOfPeaks=0,
            StoreInADS=False)

        for m in range(0, self._iterations):
            if m == 0:
                predictor = self._predicted_peaks
            if m > 0:
                predictor = linked_peaks_predicted

            qtol_var = self._qtol * self._qdecrement**m
            num_peaks_var = self._num_peaks + self._peak_increment * m

            # add q_lab and dpsacing values of found peaks to a list
            qlabs_observed = np.array(self._observed_peaks.column("QLab"))
            dspacings_observed = np.array(
                self._observed_peaks.column("DSpacing"))

            # sort the predicted peaks from largest to smallest dspacing
            qlabs_predicted = np.array(predictor.column("QLab"))
            dspacings_predicted = np.array(predictor.column("DSpacing"))

            # get the indexing list that sorts dspacing from largest to
            # smallest
            hkls = np.array([[p.getH(), p.getK(), p.getL()]
                             for p in predictor])
            idx = dspacings_predicted.argsort()[::-1]
            HKL_predicted = hkls[idx, :]

            # sort q, d and h, k, l by this indexing
            qlabs_predicted = qlabs_predicted[idx]
            dspacings_predicted = dspacings_predicted[idx]

            q_ordered = qlabs_predicted[:num_peaks_var]
            d_ordered = dspacings_predicted[:num_peaks_var]
            HKL_ordered = HKL_predicted[:num_peaks_var]

            # loop through the ordered find peaks, compare q and d to each
            # predicted peak if the q and d values of a found peak match a
            # predicted peak within tolerance, the found peak inherits
            # the HKL of the predicted peak
            for i in range(len(qlabs_observed)):
                qx_obs, qy_obs, qz_obs = qlabs_observed[i]
                q_obs = V3D(qx_obs, qy_obs, qz_obs)
                p_obs = linked_peaks.createPeak(q_obs)
                d_obs = dspacings_observed[i]

                for j in range(len(q_ordered)):
                    qx_pred, qy_pred, qz_pred = q_ordered[j]
                    d_pred = d_ordered[j]

                    if (qx_pred - qtol_var <= qx_obs <= qx_pred + qtol_var and
                            qy_pred - qtol_var <= qy_obs <= qy_pred + qtol_var
                            and
                            qz_pred - qtol_var <= qz_obs <= qz_pred + qtol_var
                            and d_pred - self._dtol <= d_obs <=
                            d_pred + self._dtol):
                        h, k, l = HKL_ordered[j]
                        p_obs.setHKL(h, k, l)
                        linked_peaks.addPeak(p_obs)

            # Clean up peaks where H == K == L == 0
            linked_peaks = FilterPeaks(linked_peaks,
                                       FilterVariable="h^2+k^2+l^2",
                                       Operator="!=",
                                       FilterValue="0")

            # force UB on linked_peaks using known lattice parameters
            CalculateUMatrix(PeaksWorkspace=linked_peaks,
                             a=self._a,
                             b=self._b,
                             c=self._c,
                             alpha=self._alpha,
                             beta=self._beta,
                             gamma=self._gamma,
                             StoreInADS=False)

            # new linked predicted peaks
            linked_peaks_predicted = PredictPeaks(
                InputWorkspace=linked_peaks,
                WavelengthMin=self._wavelength_min,
                WavelengthMax=self._wavelength_max,
                MinDSpacing=self._min_dspacing,
                MaxDSpacing=self._max_dspacing,
                ReflectionCondition=self._reflection_condition,
                StoreInADS=False)

        # clean up
        self.setProperty("LinkedPeaks", linked_peaks)
        self.setProperty("LinkedPredictedPeaks", linked_peaks_predicted)
        if mtd.doesExist("linked_peaks"):
            DeleteWorkspace(linked_peaks)
        if mtd.doesExist("linked_peaks_predicted"):
            DeleteWorkspace(linked_peaks_predicted)
        if self._delete_ws:
            DeleteWorkspace(self._workspace)
class WISHSingleCrystalPeakPredictionTest(MantidSystemTest):
    """
    At the time of writing WISH users rely quite heavily on the PredictPeaks
    algorithm. As WISH has tubes rather than rectangular detectors sometimes
    peaks fall between the gaps in the tubes.

    Here we check that PredictPeaks works on a real WISH dataset & UB. This also
    includes an example of a peak whose center is predicted to fall between two
    tubes.
    """
    def requiredFiles(self):
        return ["WISH00038237.raw", "WISHPredictedSingleCrystalPeaks.nxs"]

    def requiredMemoryMB(self):
        # Need lots of memory for full WISH dataset
        return 24000

    def cleanup(self):
        try:
            os.path.remove(self._peaks_file)
        except:
            pass

    def runTest(self):
        ws = LoadRaw(Filename='WISH00038237.raw', OutputWorkspace='38237')
        ws = ConvertUnits(ws, 'dSpacing', OutputWorkspace='38237')
        UB = np.array([[-0.00601763, 0.07397297, 0.05865706],
                       [0.05373321, 0.050198, -0.05651455],
                       [-0.07822144, 0.0295911, -0.04489172]])

        SetUB(ws, UB=UB)

        self._peaks = PredictPeaks(ws,
                                   WavelengthMin=0.1,
                                   WavelengthMax=100,
                                   OutputWorkspace='peaks')
        # We specifically want to check peak -5 -1 -7 exists, so filter for it
        self._filtered = FilterPeaks(self._peaks,
                                     "h^2+k^2+l^2",
                                     75,
                                     '=',
                                     OutputWorkspace='filtered')

        SaveIsawPeaks(self._peaks, Filename='WISHSXReductionPeaksTest.peaks')

    def validate(self):
        self.assertEqual(self._peaks.rowCount(), 510)
        self.assertEqual(self._filtered.rowCount(), 6)

        # The peak at [-5 -1 -7] is known to fall between the gaps of WISH's tubes
        # Specifically check this one is predicted to exist because past bugs have
        # been found in the ray tracing.
        BasicPeak = namedtuple('Peak', ('DetID', 'BankName', 'h', 'k', 'l'))
        expected = BasicPeak(DetID=9202086,
                             BankName='WISHpanel09',
                             h=-5.0,
                             k=-1.0,
                             l=-7.0)
        expected_peak_found = False
        for full_peak in self._filtered:
            peak = BasicPeak(DetID=full_peak.getDetectorID(),
                             BankName=full_peak.getBankName(),
                             h=full_peak.getH(),
                             k=full_peak.getK(),
                             l=full_peak.getL())
            if peak == expected:
                expected_peak_found = True
                break
        #endfor
        self.assertTrue(
            expected_peak_found,
            msg="Peak at {} expected but it was not found".format(expected))
        self._peaks_file = os.path.join(config['defaultsave.directory'],
                                        'WISHSXReductionPeaksTest.peaks')
        self.assertTrue(os.path.isfile(self._peaks_file))

        return self._peaks.name(), "WISHPredictedSingleCrystalPeaks.nxs"
Exemplo n.º 8
0
                   Tolerance=tolerance)

    print peaks_ws.sample().getOrientedLattice()
    indexed = IndexPeaks(PeaksWorkspace=peaks_ws, Tolerance=tolerance)
    print("Number of Indexed Peaks: {:d}".format(indexed[0]))

    #
    # Get complete list of peaks to be integrated and load the UB matrix into
    # the predicted peaks workspace, so that information can be used by the
    # PeakIntegration algorithm.
    #
    if integrate_predicted_peaks:
        print "PREDICTING peaks to integrate...."
        peaks_ws = PredictPeaks(InputWorkspace=peaks_ws,
                                WavelengthMin=min_pred_wl,
                                WavelengthMax=max_pred_wl,
                                MinDSpacing=min_pred_dspacing,
                                MaxDSpacing=max_pred_dspacing,
                                ReflectionCondition='Primitive')
        #Remove peaks on detector edge
        peaks_on_edge = []
        for i in range(peaks_ws.getNumberPeaks()):
            pi = peaks_ws.getPeak(i)
            if pi.getRow() < 16 or pi.getRow() > 240 or pi.getCol(
            ) < 16 or pi.getCol() > 240:
                peaks_on_edge.append(i)
        DeleteTableRows(TableWorkspace=peaks_ws, Rows=peaks_on_edge)
        #
        #Find peak centroids from predicted peak position on detector face in event workspace
        peaks_ws = CentroidPeaks(InPeaksWorkspace=peaks_ws,
                                 InputWorkspace=event_ws,
                                 PeakRadius=4,
class WISHSingleCrystalPeakPredictionTest(MantidSystemTest):
    """
    At the time of writing WISH users rely quite heavily on the PredictPeaks
    algorithm. As WISH has tubes rather than rectangular detectors sometimes
    peaks fall between the gaps in the tubes.

    Here we check that PredictPeaks works on a real WISH dataset & UB. This also
    includes an example of a peak whose center is predicted to fall between two
    tubes.
    """

    def requiredFiles(self):
        return ["WISH00038237.raw", "WISHPredictedSingleCrystalPeaks.nxs"]

    def requiredMemoryMB(self):
        # Need lots of memory for full WISH dataset
        return 16000

    def cleanup(self):
        try:
            os.path.remove(self._peaks_file)
        except:
            pass

    def runTest(self):
        ws = LoadRaw(Filename='WISH00038237.raw', OutputWorkspace='38237')
        ws = ConvertUnits(ws, 'dSpacing', OutputWorkspace='38237')
        UB = np.array([[-0.00601763,  0.07397297,  0.05865706],
                       [ 0.05373321,  0.050198,   -0.05651455],
                       [-0.07822144,  0.0295911,  -0.04489172]])

        SetUB(ws, UB=UB)

        self._peaks = PredictPeaks(ws, WavelengthMin=0.1, WavelengthMax=100,
                                   OutputWorkspace='peaks')
        # We specifically want to check peak -5 -1 -7 exists, so filter for it
        self._filtered = FilterPeaks(self._peaks, "h^2+k^2+l^2", 75, '=',
                                     OutputWorkspace='filtered')

        SaveIsawPeaks(self._peaks, Filename='WISHSXReductionPeaksTest.peaks')

    def validate(self):
        self.assertEqual(self._peaks.rowCount(), 510)
        self.assertEqual(self._filtered.rowCount(), 6)

        # The peak at [-5 -1 -7] is known to fall between the gaps of WISH's tubes
        # Specifically check this one is predicted to exist because past bugs have
        # been found in the ray tracing.
        Peak = namedtuple('Peak', ('DetID', 'BankName', 'h', 'k', 'l'))
        expected = Peak(DetID=9202086, BankName='WISHpanel09', h=-5.0, k=-1.0, l=-7.0)
        expected_peak_found = False
        for row in self._filtered:
            peak = Peak(DetID=row['DetID'], BankName=row['BankName'], h=row['h'], k=row['k'], l=row['l'])
            if peak == expected:
                expected_peak_found = True
                break
        #endfor
        self.assertTrue(expected_peak_found, msg="Peak at {} expected but it was not found".format(expected))
        self._peaks_file = os.path.join(config['defaultsave.directory'], 'WISHSXReductionPeaksTest.peaks')
        self.assertTrue(os.path.isfile(self._peaks_file))

        return self._peaks.name(), "WISHPredictedSingleCrystalPeaks.nxs"
Exemplo n.º 10
0
    def PyExec(self):
        input_ws = self.getProperty("InputWorkspace").value
        ub_ws = self.getProperty("UBWorkspace").value
        output_ws = self.getProperty("OutputWorkspace").valueAsStr
        reflection_condition = self.getProperty("ReflectionCondition").value

        # Whether to use the inner goniometer depending on omega and phi in sample logs
        use_inner = False
        min_angle = None
        max_angle = None

        wavelength = 0.0

        if input_ws.getNumExperimentInfo() == 0:
            # Warn if we could extract a wavelength from the workspace
            raise RuntimeWarning("No experiment info was found in input '{}'".format(input_ws.getName()))

        exp_info = input_ws.getExperimentInfo(0)
        if exp_info.run().hasProperty("wavelength"):
            wavelength = exp_info.run().getProperty("wavelength").value

        if exp_info.run().hasProperty("omega") and exp_info.run().hasProperty("phi"):
            gon = exp_info.run().getGoniometer().getEulerAngles('YZY')
            if np.isclose(exp_info.run().getTimeAveragedStd("omega"), 0.0):
                use_inner = True
                min_angle = -exp_info.run().getLogData('phi').value.max()
                max_angle = -exp_info.run().getLogData('phi').value.min()
                # Sometimes you get the 180 degrees off what is expected from the log
                phi_log = -exp_info.run().getLogData('phi').value[0]
                if np.isclose(phi_log + 180, gon[2]):
                    min_angle += 180
                    max_angle += 180
                elif np.isclose(phi_log - 180, gon[2]):
                    min_angle -= 180
                    max_angle -= 180
            elif np.isclose(exp_info.run().getTimeAveragedStd("phi"), 0.0):
                use_inner = False
                min_angle = -exp_info.run().getLogData('omega').value.max()
                max_angle = -exp_info.run().getLogData('omega').value.min()
                # Sometimes you get the 180 degrees off what is expected from the log
                omega_log = -exp_info.run().getLogData('omega').value[0]
                if np.isclose(omega_log + 180, gon[0]):
                    min_angle += 180
                    max_angle += 180
                elif np.isclose(omega_log - 180, gon[0]):
                    min_angle -= 180
                    max_angle -= 180
            else:
                self.log().warning("No appropriate goniometer rotation found, try anyway")

        self.log().information("Using inner goniometer: {}".format(use_inner))

        if not self.getProperty("Wavelength").isDefault:
            wavelength = self.getProperty("Wavelength").value
        elif wavelength == 0:
            raise RuntimeWarning("No wavelength found, you need to provide one")

        # temporary set UB on workspace if one is provided by UBWorkspace
        tmp_ws_name = '__HB3APredictPeaks_UB_tmp'
        if ub_ws is not None:
            input_ws = CloneMDWorkspace(InputWorkspace=input_ws,
                                        OutputWorkspace=tmp_ws_name)
            CopySample(InputWorkspace=ub_ws,
                       OutputWorkspace=tmp_ws_name,
                       CopyName=False,
                       CopyMaterial=False,
                       CopyEnvironment=False,
                       CopyShape=False,
                       CopyLattice=True)

        if self.getProperty("SatellitePeaks").value:
            peaks = PredictPeaks(InputWorkspace=input_ws,
                                 ReflectionCondition=reflection_condition,
                                 MinDSpacing=self.getProperty("MinDSpacing").value,
                                 MaxDSpacing=self.getProperty("MaxDSpacing").value,
                                 OutputType='LeanElasticPeak',
                                 CalculateWavelength=False,
                                 OutputWorkspace=output_ws)
            peaks = PredictSatellitePeaks(peaks,
                                          ModVector1=self.getProperty("ModVector1").value,
                                          ModVector2=self.getProperty("ModVector2").value,
                                          ModVector3=self.getProperty("ModVector3").value,
                                          MaxOrder=self.getProperty("MaxOrder").value,
                                          GetModVectorsFromUB=self.getProperty("GetModVectorsFromUB").value,
                                          CrossTerms=self.getProperty("CrossTerms").value,
                                          IncludeIntegerHKL=self.getProperty("IncludeIntegerHKL").value,
                                          MinDSpacing=self.getProperty("MinDSpacing").value,
                                          MaxDSpacing=self.getProperty("MaxDSpacing").value,
                                          SatellitePeaks=output_ws)
            HFIRCalculateGoniometer(peaks, Wavelength=wavelength)
        else:
            peaks = PredictPeaks(InputWorkspace=input_ws,
                                 ReflectionCondition=reflection_condition,
                                 CalculateGoniometerForCW=True,
                                 Wavelength=wavelength,
                                 FlipX=True,
                                 InnerGoniometer=use_inner,
                                 MinAngle=min_angle,
                                 MaxAngle=max_angle,
                                 MinDSpacing=self.getProperty("MinDSpacing").value,
                                 MaxDSpacing=self.getProperty("MaxDSpacing").value,
                                 OutputWorkspace=output_ws)

        # delete tmp workspace
        if mtd.doesExist(tmp_ws_name):
            DeleteWorkspace(tmp_ws_name)

        self.setProperty("OutputWorkspace", peaks)