Exemplo n.º 1
0
    def _add_simultaneous_fit_results_to_ADS_and_context(
            self, input_workspace_names: list, parameter_table,
            output_group_workspace, covariance_matrix,
            global_parameters: list) -> None:
        """Adds the results of a simultaneous fit to the ADS and fitting context."""
        function_name = self.fitting_context.function_name

        output_workspace_wraps, directory = self._create_output_workspace_wraps(
            input_workspace_names, function_name, output_group_workspace)

        parameter_table_name, _ = create_parameter_table_name(
            input_workspace_names[0] + "+ ...", function_name)
        covariance_matrix_name, _ = create_covariance_matrix_name(
            input_workspace_names[0] + "+ ...", function_name)

        self._add_workspace_to_ADS(parameter_table, parameter_table_name,
                                   directory)
        self._add_workspace_to_ADS(covariance_matrix, covariance_matrix_name,
                                   directory)

        parameter_workspace_wrap = StaticWorkspaceWrapper(
            parameter_table_name, retrieve_ws(parameter_table_name))
        covariance_workspace_wrap = StaticWorkspaceWrapper(
            covariance_matrix_name, retrieve_ws(covariance_matrix_name))
        # the directory returns with a slash, so lets remove it
        self._add_workspaces_to_group(
            [parameter_table_name, covariance_matrix_name], directory[:-1])

        self._add_fit_to_context(input_workspace_names, output_workspace_wraps,
                                 parameter_workspace_wrap,
                                 covariance_workspace_wrap, global_parameters)
Exemplo n.º 2
0
    def test_log_names_respects_filter(self):
        time_series_logs = (('ts_1', (1., )), ('ts_2', (3., )), ('ts_3', [2.]),
                            ('ts_4', [3.]))
        fake1 = create_test_workspace(
            ws_name='fake1', time_series_logs=time_series_logs[:2])
        fake2 = create_test_workspace(
            ws_name='fake2', time_series_logs=time_series_logs[2:])

        table_workspace = WorkspaceFactory.createTable()
        fit1 = FitInformation(mock.MagicMock(), 'func1', [StaticWorkspaceWrapper(fake1.name(), fake1)],
                              StaticWorkspaceWrapper(fake1.name(), table_workspace), mock.MagicMock())
        fit2 = FitInformation(mock.MagicMock(), 'func1', [StaticWorkspaceWrapper(fake2.name(), fake2)],
                              StaticWorkspaceWrapper(fake2.name(), table_workspace), mock.MagicMock())

        self.mock_active_fit_history = mock.PropertyMock(return_value=[fit1, fit2])
        type(self.fitting_context).active_fit_history = self.mock_active_fit_history
        self.fitting_context.all_latest_fits = mock.MagicMock(return_value=[fit1, fit2])

        self.fitting_context.add_fit(fit1)
        self.fitting_context.add_fit(fit2)

        required_logs = ('ts_2', 'ts_4')
        log_names = self.fitting_context.log_names(
            filter_fn=lambda log: log.name in required_logs)
        self.assertEqual(len(required_logs), len(log_names))
        for name in required_logs:
            self.assertTrue(
                name in log_names, msg="{} not found in log list".format(name))
Exemplo n.º 3
0
    def test_has_log_returns_true_if_all_workspaces_have_the_log(self):
        time_series_logs = (('ts_1', (1., )), ('ts_2', (3., )))
        fake1 = create_test_workspace(ws_name='fake1',
                                      time_series_logs=time_series_logs)
        fake2 = create_test_workspace(ws_name='fake2',
                                      time_series_logs=time_series_logs)
        fit = FitInformation(mock.MagicMock(), 'func1', [
            StaticWorkspaceWrapper(fake1.name(), fake1),
            StaticWorkspaceWrapper(fake2.name(), fake2)
        ], mock.MagicMock(), mock.MagicMock())

        self.assertTrue(fit.has_log('ts_1'))
Exemplo n.º 4
0
    def test_has_log_returns_false_if_all_workspaces_do_not_have_log(self):
        time_series_logs = [('ts_1', (1., ))]
        fake1 = create_test_workspace(ws_name='fake1',
                                      time_series_logs=time_series_logs)
        fake2 = create_test_workspace(ws_name='fake2')
        fit = FitInformation(mock.MagicMock(), 'func1', [
            StaticWorkspaceWrapper(fake1.name(), fake1),
            StaticWorkspaceWrapper(fake2.name(), fake2)
        ], mock.MagicMock(), mock.MagicMock())

        self.assertFalse(
            fit.has_log('ts_1'),
            msg='All input workspaces should have the requested log')
Exemplo n.º 5
0
    def test_that_show_normalised_covariance_matrix_will_not_raise_an_error(
            self):
        ws = CreateEmptyTableWorkspace()
        wrapper = StaticWorkspaceWrapper("CovarianceMatrix", ws)

        self.view.show_normalised_covariance_matrix(wrapper.workspace,
                                                    wrapper.workspace_name)
    def test_that_current_normalised_covariance_matrix_will_return_a_statix_workspace_wrapper_when_a_fit_exists(self):
        ws = CreateEmptyTableWorkspace()
        wrapper = StaticWorkspaceWrapper("CovarianceMatrix", ws)
        self.model._get_normalised_covariance_matrix_for = mock.Mock(return_value=wrapper)

        covariance_wrapper = self.model.current_normalised_covariance_matrix()
        self.assertEqual(covariance_wrapper, wrapper)
Exemplo n.º 7
0
    def test_that_has_normalised_covariance_matrix_returns_true_when_there_is_not_a_covariance_matrix(
            self):
        ws = CreateEmptyTableWorkspace()
        wrapper = StaticWorkspaceWrapper("CovarianceMatrix", ws)
        self.model._get_normalised_covariance_matrix_for = mock.Mock(
            return_value=wrapper)

        self.assertTrue(self.model.has_normalised_covariance_matrix())
Exemplo n.º 8
0
    def test_logs_from_workspace_without_logs_returns_emtpy_list(self):
        fake_ws = create_test_workspace()
        fit = FitInformation(mock.MagicMock(), 'func1',
                             [StaticWorkspaceWrapper(fake_ws.name(), fake_ws)],
                             mock.MagicMock(), mock.MagicMock())

        allowed_logs = fit.log_names()
        self.assertEqual(0, len(allowed_logs))
Exemplo n.º 9
0
    def test_create_results_table_with_logs_selected(self):
        workspace = CreateWorkspace([0, 1, 2, 3, 4, 5], [0, 1, 2, 3, 4, 5])
        workspace.mutableRun().addProperty(
            "run_start", "1970-01-01T00:00:01 to 1970-01-01T00:00:01", True)
        AddTimeSeriesLog(workspace,
                         Name="sample_temp",
                         Time="2010-01-01T00:00:00",
                         Value=100)
        AddTimeSeriesLog(workspace,
                         Name="sample_temp",
                         Time="2010-01-01T00:30:00",
                         Value=65)
        AddTimeSeriesLog(workspace,
                         Name="sample_temp",
                         Time="2010-01-01T00:50:00",
                         Value=100.2)
        workspace.mutableRun().addProperty("sample_magn_field", 2, True)
        _, model = create_test_model(
            ('ws1', ), 'func1', self.parameters,
            [StaticWorkspaceWrapper('ws1', workspace)], self.logs)
        selected_results = [('ws1', 0)]
        table = model.create_results_table(self.log_names, selected_results)

        # workspace_name => no error col as its a string
        # sample_temp => time series and will have non-zero error
        # sample_magn_field => just a number
        expected_cols = [
            'workspace_name', 'run_start', 'run_start_seconds', 'sample_temp',
            'sample_tempError', 'sample_magn_field', 'sample_magn_fieldError',
            'f0.Height', 'f0.HeightError', 'f0.PeakCentre',
            'f0.PeakCentreError', 'f0.Sigma', 'f0.SigmaError', 'f1.Height',
            'f1.HeightError', 'f1.PeakCentre', 'f1.PeakCentreError',
            'f1.Sigma', 'f1.SigmaError', 'Cost function value'
        ]
        expected_types = (TableColumnType.NoType, TableColumnType.X,
                          TableColumnType.X, TableColumnType.X,
                          TableColumnType.XErr, TableColumnType.X,
                          TableColumnType.XErr, TableColumnType.Y,
                          TableColumnType.YErr, TableColumnType.Y,
                          TableColumnType.YErr, TableColumnType.Y,
                          TableColumnType.YErr, TableColumnType.Y,
                          TableColumnType.YErr, TableColumnType.Y,
                          TableColumnType.YErr, TableColumnType.Y,
                          TableColumnType.YErr, TableColumnType.Y)
        avg_log_values = "1970-01-01T00:00:01 to 1970-01-01T00:00:01", 1, 86., 2.0
        expected_content = [
            ('ws1_Parameters', avg_log_values[0], avg_log_values[1],
             avg_log_values[2], 17.146, avg_log_values[3], 0.,
             self.f0_height[0], self.f0_height[1], self.f0_centre[0],
             self.f0_centre[1], self.f0_sigma[0], self.f0_sigma[1],
             self.f1_height[0], self.f1_height[1], self.f1_centre[0],
             self.f1_centre[1], self.f1_sigma[0], self.f1_sigma[1],
             self.cost_function[0])
        ]
        self._assert_table_matches_expected(zip(expected_cols, expected_types),
                                            expected_content, table,
                                            model.results_table_name())
Exemplo n.º 10
0
    def test_log_names_from_list_of_workspaces_gives_combined_set(self):
        time_series_logs = (('ts_1', (1., )), ('ts_2', (3., )), ('ts_3', [2.]),
                            ('ts_4', [3.]))

        fake1 = create_test_workspace(ws_name='fake1',
                                      time_series_logs=time_series_logs[:2])
        fake2 = create_test_workspace(ws_name='fake2',
                                      time_series_logs=time_series_logs[2:])
        fit = FitInformation(mock.MagicMock(), 'func1', [
            StaticWorkspaceWrapper(fake1.name(), fake1),
            StaticWorkspaceWrapper(fake2.name(), fake2)
        ], mock.MagicMock(), mock.MagicMock())

        log_names = fit.log_names()
        self.assertEqual(len(time_series_logs), len(log_names))
        for name, _ in time_series_logs:
            self.assertTrue(name in log_names,
                            msg="{} not found in log list".format(name))
Exemplo n.º 11
0
    def test_that_handle_covariance_matrix_clicked_calls_the_expected_functions(self):
        ws = CreateEmptyTableWorkspace()
        wrapper = StaticWorkspaceWrapper("CovarianceMatrix", ws)
        self.model.current_normalised_covariance_matrix = mock.Mock(return_value=wrapper)

        self.presenter.handle_covariance_matrix_clicked()

        self.model.current_normalised_covariance_matrix.assert_called_once_with()
        self.view.show_normalised_covariance_matrix.assert_called_once_with(wrapper.workspace, wrapper.workspace_name)
Exemplo n.º 12
0
    def test_string_log_value_from_fit_with_single_workspace(self):
        single_value_logs = [('sv_1', '5')]
        fake1 = create_test_workspace(ws_name='fake1',
                                      string_value_logs=single_value_logs)
        fit = FitInformation(mock.MagicMock(), 'func1',
                             [StaticWorkspaceWrapper(fake1.name(), fake1)],
                             mock.MagicMock(), mock.MagicMock())

        self.assertEqual(float(single_value_logs[0][1]),
                         fit.log_value(single_value_logs[0][0]))
Exemplo n.º 13
0
    def test_time_series_log_value_from_fit_with_multiple_workspaces_uses_average_of_time_average(
            self):
        time_series_logs1 = \
            [('ts_1', (("2000-05-01T12:00:00", 5.),
             ("2000-05-01T12:00:10", 20.),
             ("2000-05-01T12:05:00", 30.)))]
        fake1 = create_test_workspace('fake1', time_series_logs1)
        time_series_logs2 = \
            [('ts_1', (("2000-05-01T12:00:30", 10.),
             ("2000-05-01T12:01:45", 30.),
             ("2000-05-01T12:05:00", 40.)))]
        fake2 = create_test_workspace('fake2', time_series_logs2)
        fit = FitInformation(mock.MagicMock(), 'func1', [
            StaticWorkspaceWrapper(fake1.name(), fake1),
            StaticWorkspaceWrapper(fake2.name(), fake2)
        ], mock.MagicMock(), mock.MagicMock())

        time_average1 = (10 * 5 + 290 * 20) / 300.
        time_average2 = (75 * 10 + 195 * 30) / 270.
        all_average = 0.5 * (time_average1 + time_average2)
        self.assertAlmostEqual(all_average, fit.log_value('ts_1'), places=6)
Exemplo n.º 14
0
    def test_log_names_uses_filter_fn(self):
        time_series_logs = (('ts_1', (1., )), ('ts_2', (3., )), ('ts_3', [2.]),
                            ('ts_4', [3.]))
        fake1 = create_test_workspace(ws_name='fake1',
                                      time_series_logs=time_series_logs)
        fit = FitInformation(mock.MagicMock(), 'func1',
                             [StaticWorkspaceWrapper(fake1.name(), fake1)],
                             mock.MagicMock(), mock.MagicMock())

        log_names = fit.log_names(lambda log: log.name == 'ts_1')
        self.assertEqual(1, len(log_names))
        self.assertEqual(time_series_logs[0][0], log_names[0])
    def test_remove_workspace_by_name_will_remove_a_fit_containing_a_specific_parameter_workspace(
            self):
        output_ws = WorkspaceFactory.create("Workspace2D",
                                            NVectors=3,
                                            YLength=5,
                                            XLength=5)
        table_workspace = WorkspaceFactory.createTable()

        output_ws_wrap1 = StaticWorkspaceWrapper("Output1", output_ws)
        parameter_ws_wrap1 = StaticWorkspaceWrapper("Parameter1",
                                                    table_workspace)
        covariance_ws_wrap1 = StaticWorkspaceWrapper("Covariance1",
                                                     table_workspace)
        output_ws_wrap2 = StaticWorkspaceWrapper("Output2", output_ws)
        parameter_ws_wrap2 = StaticWorkspaceWrapper("Parameter2",
                                                    table_workspace)
        covariance_ws_wrap2 = StaticWorkspaceWrapper("Covariance2",
                                                     table_workspace)

        fit1 = FitInformation(["Input1"], "GausOsc", [output_ws_wrap1],
                              parameter_ws_wrap1, covariance_ws_wrap1)
        fit2 = FitInformation(["Input2"], "GausOsc", [output_ws_wrap2],
                              parameter_ws_wrap2, covariance_ws_wrap2)

        self.fitting_context.active_fit_history = [fit1, fit2]

        self.fitting_context.remove_workspace_by_name("Parameter1")

        self.assertEqual(self.fitting_context.active_fit_history[0], fit2)
        self.assertEqual(self.fitting_context.all_latest_fits()[0], fit2)
    def test_that_all_latest_fits_will_return_the_two_most_recent_unique_fits(
            self):
        output_ws = WorkspaceFactory.create("Workspace2D",
                                            NVectors=3,
                                            YLength=5,
                                            XLength=5)
        table_workspace = WorkspaceFactory.createTable()

        output_ws_wrap1 = StaticWorkspaceWrapper("Output1", output_ws)
        parameter_ws_wrap1 = StaticWorkspaceWrapper("Parameter1",
                                                    table_workspace)
        covariance_ws_wrap1 = StaticWorkspaceWrapper("Covariance1",
                                                     table_workspace)
        output_ws_wrap2 = StaticWorkspaceWrapper("Output2", output_ws)
        parameter_ws_wrap2 = StaticWorkspaceWrapper("Parameter2",
                                                    table_workspace)
        covariance_ws_wrap2 = StaticWorkspaceWrapper("Covariance2",
                                                     table_workspace)

        fit1 = FitInformation(["Input1"], "GausOsc", [output_ws_wrap1],
                              parameter_ws_wrap1, covariance_ws_wrap1)
        fit2 = FitInformation(["Input2"], "GausOsc", [output_ws_wrap2],
                              parameter_ws_wrap2, covariance_ws_wrap2)
        fit3 = FitInformation(["Input1"], "GausOsc", [output_ws_wrap1],
                              parameter_ws_wrap1, covariance_ws_wrap1)

        self.fitting_context.active_fit_history = [fit1, fit2, fit3]

        self.assertEqual(self.fitting_context.active_fit_history[0], fit1)
        self.assertEqual(self.fitting_context.active_fit_history[1], fit2)
        self.assertEqual(self.fitting_context.active_fit_history[2], fit3)

        # fit3 == fit1 and fit3 is more recent, so 'all_latest_fits' will only return the most recent unique fits.
        self.assertEqual(self.fitting_context.all_latest_fits()[0], fit2)
        self.assertEqual(self.fitting_context.all_latest_fits()[1], fit3)
Exemplo n.º 17
0
    def test_time_series_log_value_from_fit_with_single_workspace_uses_time_average(
            self):
        time_series_logs = \
            [('ts_1', (("2000-05-01T12:00:00", 5.),
             ("2000-05-01T12:00:10", 20.),
             ("2000-05-01T12:05:00", 30.)))]
        fake1 = create_test_workspace('fake1', time_series_logs)
        fit = FitInformation(mock.MagicMock(), 'func1',
                             [StaticWorkspaceWrapper(fake1.name(), fake1)],
                             mock.MagicMock(), mock.MagicMock())

        time_average = (10 * 5 + 290 * 20) / 300.
        self.assertAlmostEqual(time_average, fit.log_value('ts_1'), places=6)
Exemplo n.º 18
0
    def _create_output_workspace_wraps_for_a_multi_domain_fit(
            self, input_workspace_names: list, output_group_workspace,
            output_group_name: str) -> list:
        """Returns a list of StaticWorkspaceWrapper objects containing the fitted output workspaces for many domains."""
        self._add_workspace_to_ADS(output_group_workspace, output_group_name,
                                   "")
        output_workspace_names = self._rename_members_of_fitted_workspace_group(
            input_workspace_names, output_group_name)

        return [
            StaticWorkspaceWrapper(workspace_name, retrieve_ws(workspace_name))
            for workspace_name in output_workspace_names
        ]
Exemplo n.º 19
0
    def test_create_results_table_with_logs_missing_from_some_workspaces_raises(
            self):
        workspace = WorkspaceFactory.create("Workspace2D",
                                            NVectors=3,
                                            YLength=5,
                                            XLength=5)

        parameters = OrderedDict([('f0.Height', (100, 0.1))])
        logs = [('log1', (1., 2.)), ('log2', (3., 4.)), ('log3', (4., 5.)),
                ('log4', (5., 6.))]
        fits_logs1 = create_test_fits(
            ('ws1', ),
            'func1',
            parameters,
            output_workspace_names=[
                StaticWorkspaceWrapper('test-ws1-ws', workspace)
            ])
        add_logs(fits_logs1[0].input_workspaces[0], logs[:2])

        fits_logs2 = create_test_fits(
            ('ws2', ),
            'func1',
            parameters,
            output_workspace_names=[
                StaticWorkspaceWrapper('test-ws2-ws', workspace)
            ])
        add_logs(fits_logs2[0].input_workspaces[0], logs[2:])

        fitting_context = TFAsymmetryFittingContext()
        fitting_context.fit_list = fits_logs1 + fits_logs2
        model = ResultsTabModel(fitting_context, ResultsContext())

        selected_results = [('ws1', 0), ('ws2', 1)]
        selected_logs = ['log1', 'log3']
        self.assertRaises(IndexError, model.create_results_table,
                          selected_logs, selected_results)
Exemplo n.º 20
0
    def test_logs_for_single_workspace_return_all_time_series_logs(self):
        time_series_logs = (('ts_1', (1., )), ('ts_2', (3., )))
        single_value_logs = (('sv_1', 'val1'), ('sv_2', 'val2'))
        fake_ws = create_test_workspace(time_series_logs=time_series_logs)
        fit = FitInformation(mock.MagicMock(), 'func1',
                             [StaticWorkspaceWrapper(fake_ws.name(), fake_ws)],
                             mock.MagicMock(), mock.MagicMock())

        log_names = fit.log_names()
        for name, _ in time_series_logs:
            self.assertTrue(name in log_names,
                            msg="{} not found in log list".format(name))
        for name, _ in single_value_logs:
            self.assertFalse(name in log_names,
                             msg="{} found in log list".format(name))
Exemplo n.º 21
0
 def _create_output_workspace_wraps(self, input_workspace_names: list,
                                    function_name: str,
                                    output_group_workspace) -> tuple:
     """Returns a list of StaticWorkspaceWrapper objects containing the fitted output workspaces"""
     if self.fitting_context.number_of_datasets > 1:
         output_group_name, directory = create_multi_domain_fitted_workspace_name(
             input_workspace_names[0], function_name)
         output_workspace_wraps = self._create_output_workspace_wraps_for_a_multi_domain_fit(
             input_workspace_names, output_group_workspace,
             output_group_name)
     else:
         output_workspace_name, directory = create_fitted_workspace_name(
             input_workspace_names[0], function_name)
         self._add_workspace_to_ADS(output_group_workspace,
                                    output_workspace_name, directory)
         output_workspace_wraps = [
             StaticWorkspaceWrapper(output_workspace_name,
                                    retrieve_ws(output_workspace_name))
         ]
     return output_workspace_wraps, directory
Exemplo n.º 22
0
def create_test_fits(input_workspaces,
                     function_name,
                     parameters,
                     output_workspace_names=None,
                     global_parameters=None):
    """
    Create a list of fits
    :param input_workspaces: The input workspaces
    :param function_name: The name of the function
    :param parameters: The parameters list
    :param output_workspace_names: A list of workspace names
    :param global_parameters: An optional list of tied parameters
    :return: A list of Fits
    """
    workspace = WorkspaceFactory.create("Workspace2D",
                                        NVectors=3,
                                        YLength=5,
                                        XLength=5)

    output_workspace_names = output_workspace_names if output_workspace_names is not None else [
        StaticWorkspaceWrapper('test-output-ws', workspace)
    ]
    # Convert parameters to fit table-like structure
    fit_table = [{
        'Name': name,
        'Value': value,
        'Error': error
    } for name, (value, error) in parameters.items()]

    fits = []
    for name in input_workspaces:
        parameter_workspace = mock.NonCallableMagicMock()
        parameter_workspace.workspace.__iter__.return_value = fit_table
        parameter_workspace.workspace_name = name + '_Parameters'
        fits.append(
            FitInformation([name], function_name,
                           output_workspace_names, parameter_workspace,
                           mock.Mock(), global_parameters))

    return fits
Exemplo n.º 23
0
    def test_create_results_table_with_logs_selected(self):
        workspace = WorkspaceFactory.create("Workspace2D",
                                            NVectors=3,
                                            YLength=5,
                                            XLength=5)
        workspace.mutableRun().addProperty("sample_temp", 50, True)
        workspace.mutableRun().addProperty("sample_magn_field", 2, True)
        _, model = create_test_model(
            ('ws1', ), 'func1', self.parameters,
            [StaticWorkspaceWrapper('ws1', workspace)], self.logs)
        selected_results = [('ws1', 0)]
        table = model.create_results_table(self.log_names, selected_results)

        expected_cols = ['workspace_name'] + self.log_names + [
            'f0.Height', 'f0.HeightError', 'f0.PeakCentre',
            'f0.PeakCentreError', 'f0.Sigma', 'f0.SigmaError', 'f1.Height',
            'f1.HeightError', 'f1.PeakCentre', 'f1.PeakCentreError',
            'f1.Sigma', 'f1.SigmaError', 'Cost function value'
        ]
        expected_types = (TableColumnType.NoType, TableColumnType.X,
                          TableColumnType.X, TableColumnType.Y,
                          TableColumnType.YErr, TableColumnType.Y,
                          TableColumnType.YErr, TableColumnType.Y,
                          TableColumnType.YErr, TableColumnType.Y,
                          TableColumnType.YErr, TableColumnType.Y,
                          TableColumnType.YErr, TableColumnType.Y,
                          TableColumnType.YErr, TableColumnType.Y)
        avg_log_values = 50., 2.0
        expected_content = [
            ('ws1_Parameters', avg_log_values[0], avg_log_values[1],
             self.f0_height[0], self.f0_height[1], self.f0_centre[0],
             self.f0_centre[1], self.f0_sigma[0], self.f0_sigma[1],
             self.f1_height[0], self.f1_height[1], self.f1_centre[0],
             self.f1_centre[1], self.f1_sigma[0], self.f1_sigma[1],
             self.cost_function[0])
        ]
        self._assert_table_matches_expected(zip(expected_cols, expected_types),
                                            expected_content, table,
                                            model.results_table_name())
Exemplo n.º 24
0
    def test_that_all_latest_fits_will_return_the_two_most_recent_unique_fits(
            self):
        output_ws = WorkspaceFactory.create("Workspace2D",
                                            NVectors=3,
                                            YLength=5,
                                            XLength=5)
        table_workspace = WorkspaceFactory.createTable()

        output_ws_wrap1 = StaticWorkspaceWrapper("Output1", output_ws)
        parameter_ws_wrap1 = StaticWorkspaceWrapper("Parameter1",
                                                    table_workspace)
        covariance_ws_wrap1 = StaticWorkspaceWrapper("Covariance1",
                                                     table_workspace)
        output_ws_wrap2 = StaticWorkspaceWrapper("Output2", output_ws)
        parameter_ws_wrap2 = StaticWorkspaceWrapper("Parameter2",
                                                    table_workspace)
        covariance_ws_wrap2 = StaticWorkspaceWrapper("Covariance2",
                                                     table_workspace)

        fit1 = FitInformation(["Input1"], "GausOsc", [output_ws_wrap1],
                              parameter_ws_wrap1, covariance_ws_wrap1)
        fit2 = FitInformation(["Input2"], "GausOsc", [output_ws_wrap2],
                              parameter_ws_wrap2, covariance_ws_wrap2)
        fit3 = FitInformation(["Input1"], "GausOsc", [output_ws_wrap1],
                              parameter_ws_wrap1, covariance_ws_wrap1)

        self.fitting_context.tf_asymmetry_mode = True
        self.fitting_context.simultaneous_fitting_mode = True
        self.fitting_context.active_fit_history = [fit1, fit2, fit3]

        self.assertEqual(self.fitting_context.active_fit_history[0], fit1)
        self.assertEqual(self.fitting_context.active_fit_history[1], fit2)
        self.assertEqual(self.fitting_context.active_fit_history[2], fit3)

        self.assertEqual(self.fitting_context.all_latest_fits()[0], fit2)
        self.assertEqual(self.fitting_context.all_latest_fits()[1], fit3)

        self.fitting_context.tf_asymmetry_mode = False
        self.assertEqual(self.fitting_context.active_fit_history, [])
        self.assertEqual(self.fitting_context.all_latest_fits()[0], fit2)
        self.assertEqual(self.fitting_context.all_latest_fits()[1], fit3)