Exemplo n.º 1
0
def search_and_fuse(points, keyframe, 
                    max_reproj_distance=Parameters.kMaxReprojectionDistanceFuse,
                    max_descriptor_distance = 0.5*Parameters.kMaxDescriptorDistance,
                    ratio_test=Parameters.kMatchRatioTestMap):
    #max_descriptor_distance = 0.5 * Parameters.kMaxDescriptorDistance 
    
    fused_pts_count = 0
    Ow = keyframe.Ow 
    if len(points) == 0:
        Printer.red('search_and_fuse - no points')        
        return 
        
    # get all matched points of keyframe 
    good_pts_idxs = np.flatnonzero(points!=None) 
    good_pts = points[good_pts_idxs] 
     
    if len(good_pts_idxs) == 0:
        Printer.red('search_and_fuse - no matched points')
        return
    
    # check if points are visible 
    good_pts_visible, good_projs, good_depths, good_dists = keyframe.are_visible(good_pts)
    
    if len(good_pts_visible) == 0:
        Printer.red('search_and_fuse - no visible points')
        return    
    
    predicted_levels = predict_detection_levels(good_pts, good_dists) 
    kp_scale_factors = Frame.feature_manager.scale_factors[predicted_levels]              
    radiuses = max_reproj_distance * kp_scale_factors     
    kd_idxs = keyframe.kd.query_ball_point(good_projs, radiuses)    

    #for i, p in enumerate(points):
    for i,p,j in zip(good_pts_idxs,good_pts,range(len(good_pts))):            
                
        if not good_pts_visible[j] or p.is_bad:     # point not visible in frame or point is bad 
            #print('p[%d] visible: %d, bad: %d' % (i, int(good_pts_visible[j]), int(p.is_bad))) 
            continue  
                  
        if p.is_in_keyframe(keyframe):    # we already matched this map point to this keyframe
            #print('p[%d] already in keyframe' % (i)) 
            continue
                
        # predicted_level = p.predict_detection_level(good_dists[j])         
        # kp_scale_factor = Frame.feature_manager.scale_factors[predicted_level]              
        # radius = max_reproj_distance * kp_scale_factor     
        predicted_level = predicted_levels[j]
        
        #print('p[%d] radius: %f' % (i,radius))         
            
        best_dist = math.inf 
        best_dist2 = math.inf
        best_level = -1 
        best_level2 = -1               
        best_kd_idx = -1        
            
        # find closest keypoints of frame        
        proj = good_projs[j]
        #for kd_idx in keyframe.kd.query_ball_point(proj, radius):  
        for kd_idx in kd_idxs[j]:             
                
            # check detection level     
            kp_level = keyframe.octaves[kd_idx]    
            if (kp_level<predicted_level-1) or (kp_level>predicted_level):   
                #print('p[%d] wrong predicted level **********************************' % (i))                       
                continue
        
            # check the reprojection error     
            kp = keyframe.kpsu[kd_idx]
            invSigma2 = Frame.feature_manager.inv_level_sigmas2[kp_level]                
            err = proj - kp       
            chi2 = np.inner(err,err)*invSigma2           
            if chi2 > Parameters.kChi2Mono: # chi-square 2 DOFs  (Hartley Zisserman pg 119)
                #print('p[%d] big reproj err %f **********************************' % (i,chi2))
                continue                  
                            
            descriptor_dist = p.min_des_distance(keyframe.des[kd_idx])
            #print('p[%d] descriptor_dist %f **********************************' % (i,descriptor_dist))            
            
            #if descriptor_dist < max_descriptor_distance and descriptor_dist < best_dist:     
            if descriptor_dist < best_dist:                                      
                best_dist2 = best_dist
                best_level2 = best_level
                best_dist = descriptor_dist
                best_level = kp_level
                best_kd_idx = kd_idx   
            else: 
                if descriptor_dist < best_dist2:  # N.O.
                    best_dist2 = descriptor_dist       
                    best_level2 = kp_level                                   
                                                            
        #if best_kd_idx > -1 and best_dist < max_descriptor_distance:
        if best_dist < max_descriptor_distance:         
            # apply match distance ratio test only if the best and second are in the same scale level 
            if (best_level2 == best_level) and (best_dist > best_dist2 * ratio_test):  # N.O.
                #print('p[%d] best_dist > best_dist2 * ratio_test **********************************' % (i))
                continue                
            p_keyframe = keyframe.get_point_match(best_kd_idx)
            # if there is already a map point replace it otherwise add a new point
            if p_keyframe is not None:
                if not p_keyframe.is_bad:
                    if p_keyframe.num_observations > p.num_observations:
                        p.replace_with(p_keyframe)
                    else:
                        p_keyframe.replace_with(p)                  
            else:
                p.add_observation(keyframe, best_kd_idx) 
                #p.update_info()    # done outside!
            fused_pts_count += 1                  
    return fused_pts_count     
Exemplo n.º 2
0
def search_map_by_projection(points, f_cur, 
                             max_reproj_distance=Parameters.kMaxReprojectionDistanceMap, 
                             max_descriptor_distance=Parameters.kMaxDescriptorDistance,
                             ratio_test=Parameters.kMatchRatioTestMap):
    Ow = f_cur.Ow 
    
    found_pts_count = 0
    found_pts_fidxs = []   # idx of matched points in current frame 
    
    #reproj_dists = []
    
    if len(points) == 0:
        return 0 
            
    # check if points are visible 
    visible_pts, projs, depths, dists = f_cur.are_visible(points)
    
    predicted_levels = predict_detection_levels(points, dists) 
    kp_scale_factors = Frame.feature_manager.scale_factors[predicted_levels]              
    radiuses = max_reproj_distance * kp_scale_factors     
    kd_idxs = f_cur.kd.query_ball_point(projs, radiuses)
                           
    for i, p in enumerate(points):
        if not visible_pts[i] or p.is_bad:     # point not visible in frame or is bad 
            continue        
        if p.last_frame_id_seen == f_cur.id:   # we already matched this map point to current frame or it was outlier 
            continue
        
        p.increase_visible()
        
        # predicted_level = p.predict_detection_level(dists[i])     
        predicted_level = predicted_levels[i]        
        # kp_scale_factor = Frame.feature_manager.scale_factors[predicted_level]              
        # radius = max_reproj_distance * kp_scale_factor     
                       
        best_dist = math.inf 
        best_dist2 = math.inf
        best_level = -1 
        best_level2 = -1               
        best_k_idx = -1  

        # find closest keypoints of f_cur        
        #for kd_idx in f_cur.kd.query_ball_point(projs[i], radius):
        #for kd_idx in f_cur.kd.query_ball_point(proj, radius):  
        for kd_idx in kd_idxs[i]:
     
            p_f = f_cur.points[kd_idx]
            # check there is not already a match               
            if  p_f is not None:
                if p_f.num_observations > 0:
                    continue 
                
            # check detection level     
            kp_level = f_cur.octaves[kd_idx]    
            if (kp_level<predicted_level-1) or (kp_level>predicted_level):
                continue                
                
            descriptor_dist = p.min_des_distance(f_cur.des[kd_idx])
  
            if descriptor_dist < best_dist:                                      
                best_dist2 = best_dist
                best_level2 = best_level
                best_dist = descriptor_dist
                best_level = kp_level
                best_k_idx = kd_idx    
            else: 
                if descriptor_dist < best_dist2:  
                    best_dist2 = descriptor_dist
                    best_level2 = kp_level                                        
                                                       
        #if best_k_idx > -1 and best_dist < max_descriptor_distance:
        if best_dist < max_descriptor_distance:            
            # apply match distance ratio test only if the best and second are in the same scale level 
            if (best_level2 == best_level) and (best_dist > best_dist2 * ratio_test): 
                continue 
            #print('best des distance: ', best_dist, ", max dist: ", Parameters.kMaxDescriptorDistance)                    
            if p.add_frame_view(f_cur, best_k_idx):
                found_pts_count += 1  
                found_pts_fidxs.append(best_k_idx)  
            
            #reproj_dists.append(np.linalg.norm(projs[i] - f_cur.kpsu[best_k_idx]))   
            
    # if len(reproj_dists) > 1:        
    #     reproj_dist_sigma = 1.4826 * np.median(reproj_dists)    
    # else:
    reproj_dist_sigma = max_descriptor_distance
                       
    return found_pts_count, reproj_dist_sigma, found_pts_fidxs