def get_structure_properties(structure: Structure, mode: str = 'all') -> dict:

    if mode == 'all':
        featurizer = MultipleFeaturizer([
            SiteStatsFingerprint.from_preset(
                'CoordinationNumber_ward-prb-2017'),
            StructuralHeterogeneity(),
            ChemicalOrdering(),
            DensityFeatures(),
            MaximumPackingEfficiency(),
            SiteStatsFingerprint.from_preset(
                'LocalPropertyDifference_ward-prb-2017'),
            StructureComposition(Stoichiometry()),
            StructureComposition(ElementProperty.from_preset('magpie')),
            StructureComposition(ValenceOrbital(props=['frac'])),
        ])
    else:
        # Calculate only those which do not need a Voronoi tesselation
        featurizer = MultipleFeaturizer([
            DensityFeatures(),
            StructureComposition(Stoichiometry()),
            StructureComposition(ElementProperty.from_preset('magpie')),
            StructureComposition(ValenceOrbital(props=['frac'])),
        ])

    X = featurizer.featurize(structure)

    matminer_dict = dict(list(zip(featurizer.feature_labels(), X)))

    matminer_dict['volume'] = structure.volume
    return matminer_dict
Exemplo n.º 2
0
    def featurize_structures(self, featurizer=None, **kwargs):
        """
        Featurizes the hypothetical structures available from
        hypo_structures method. Hypothetical structures for which
        featurization fails are removed and valid structures are
        made available as valid_structures

        Args:
            featurizer (Featurizer): A MatMiner Featurizer.
                Defaults to MultipleFeaturizer with PRB Ward
                Voronoi descriptors.
            **kwargs (dict): kwargs passed to featurize_many
                method of featurizer.

        Returns:
            (pandas.DataFrame): features

        """
        # Note the redundancy here is for pandas to work
        if self.hypo_structures is None:
            warnings.warn("No structures available. Generating structures.")
            self.get_structures()

        print("Generating features")
        featurizer = featurizer if featurizer else MultipleFeaturizer([
            SiteStatsFingerprint.from_preset("CoordinationNumber_ward-prb-2017"),
            StructuralHeterogeneity(),
            ChemicalOrdering(),
            MaximumPackingEfficiency(),
            SiteStatsFingerprint.from_preset("LocalPropertyDifference_ward-prb-2017"),
            StructureComposition(Stoichiometry()),
            StructureComposition(ElementProperty.from_preset("magpie")),
            StructureComposition(ValenceOrbital(props=['frac'])),
            StructureComposition(IonProperty(fast=True))
        ])

        features = featurizer.featurize_many(
            self.hypo_structures['structure'],
            ignore_errors=True, **kwargs)

        n_species, formula = [], []
        for s in self.hypo_structures['structure']:
            n_species.append(len(s.composition.elements))
            formula.append(s.composition.formula)

        self._features_df = pd.DataFrame.from_records(
            features, columns=featurizer.feature_labels())
        self._features_df.index = self.hypo_structures.index
        self._features_df['N_species'] = n_species
        self._features_df['Composition'] = formula
        self._features_df['structure'] = self.hypo_structures['structure']
        self.features = self._features_df.dropna(axis=0, how='any')
        self.features = self.features.reindex(sorted(self.features.columns), axis=1)

        self._valid_structure_labels = list(self.features.index)
        self.valid_structures = self.hypo_structures.loc[self._valid_structure_labels]

        print("{} out of {} structures were successfully featurized.".format(
            self.features.shape[0], self._features_df.shape[0]))
        return self.features
Exemplo n.º 3
0
def featurize_composition(df: pd.DataFrame) -> pd.DataFrame:
    """ Decorate input `pandas.DataFrame` of structures with composition
    features from matminer.

    Currently applies the set of all matminer composition features.

    Args:
        df (pandas.DataFrame): the input dataframe with `"structure"`
            column containing `pymatgen.Structure` objects.

    Returns:
        pandas.DataFrame: the decorated DataFrame.

    """
    logging.info("Applying composition featurizers...")
    df = df.copy()
    df['composition'] = df['structure'].apply(lambda s: s.composition)
    featurizer = MultipleFeaturizer([ElementProperty.from_preset("magpie"),
                                     AtomicOrbitals(),
                                     BandCenter(),
                                     # ElectronAffinity(), - This descriptor was not used in the paper preset
                                     Stoichiometry(),
                                     ValenceOrbital(),
                                     IonProperty(),
                                     ElementFraction(),
                                     TMetalFraction(),
                                     # CohesiveEnergy(), - This descriptor was not used in the paper preset
                                     Miedema(),
                                     YangSolidSolution(),
                                     AtomicPackingEfficiency(),
                                     ])

    df = featurizer.featurize_dataframe(df, "composition", multiindex=True, ignore_errors=True)
    df.columns = df.columns.map('|'.join).str.strip('|')

    ox_featurizer = MultipleFeaturizer([OxidationStates(),
                                        ElectronegativityDiff()
                                        ])

    df = CompositionToOxidComposition().featurize_dataframe(df, "Input Data|composition")

    df = ox_featurizer.featurize_dataframe(df, "composition_oxid", multiindex=True, ignore_errors=True)
    df = df.rename(columns={'Input Data': ''})
    df.columns = df.columns.map('|'.join).str.strip('|')

    _orbitals = {"s": 1, "p": 2, "d": 3, "f": 4}

    df['AtomicOrbitals|HOMO_character'] = df['AtomicOrbitals|HOMO_character'].map(_orbitals)
    df['AtomicOrbitals|LUMO_character'] = df['AtomicOrbitals|LUMO_character'].map(_orbitals)

    df['AtomicOrbitals|HOMO_element'] = df['AtomicOrbitals|HOMO_element'].apply(
        lambda x: -1 if not isinstance(x, str) else Element(x).Z
    )
    df['AtomicOrbitals|LUMO_element'] = df['AtomicOrbitals|LUMO_element'].apply(
        lambda x: -1 if not isinstance(x, str) else Element(x).Z
    )

    df = df.replace([np.inf, -np.inf, np.nan], 0)

    return clean_df(df)
Exemplo n.º 4
0
def similarity(_parents, target):
    featurizer = MultipleFeaturizer([
        SiteStatsFingerprint.from_preset("CoordinationNumber_ward-prb-2017"),
        StructuralHeterogeneity(),
        ChemicalOrdering(),
        MaximumPackingEfficiency(),
        SiteStatsFingerprint.from_preset(
            "LocalPropertyDifference_ward-prb-2017"),
        StructureComposition(Stoichiometry()),
        StructureComposition(ElementProperty.from_preset("magpie")),
        StructureComposition(ValenceOrbital(props=["frac"])),
        StructureComposition(IonProperty(fast=True)),
    ])

    # HACK celery doesn't work with multiprocessing (used by matminer)
    try:
        from celery import current_task
        if current_task:
            featurizer.set_n_jobs(1)
    except ImportError:
        pass

    x_target = pd.DataFrame.from_records([featurizer.featurize(target)],
                                         columns=featurizer.feature_labels())
    x_parent = pd.DataFrame.from_records(
        featurizer.featurize_many(_parents, ignore_errors=True, pbar=False),
        columns=featurizer.feature_labels(),
    )
    nulls = x_parent[x_parent.isnull().any(axis=1)].index.values
    x_parent.fillna(100000, inplace=True)

    x_target = x_target.reindex(sorted(x_target.columns), axis=1)
    x_parent = x_parent.reindex(sorted(x_parent.columns), axis=1)

    with open(os.path.join(settings.rxn_files, "scaler2.pickle"), "rb") as f:
        scaler = pickle.load(f)
    with open(os.path.join(settings.rxn_files, "quantiles.pickle"), "rb") as f:
        quantiles = pickle.load(f)

    X = scaler.transform(x_parent.append(x_target))

    D = [pairwise_distances(np.array([row, X[-1]]))[0, 1] for row in X[:-1]]

    _res = []
    for d in D:
        _res.append(np.linspace(0, 1, 101)[np.abs(quantiles - d).argmin()])
    _res = np.array(_res)
    _res[nulls] = -1
    return _res
Exemplo n.º 5
0
    def test_stoich(self):
        featurizer = Stoichiometry(num_atoms=True)
        df_stoich = Stoichiometry(num_atoms=True).featurize_dataframe(self.df, col_id="composition")
        self.assertAlmostEqual(df_stoich["num atoms"][0], 5)
        self.assertAlmostEqual(df_stoich["0-norm"][0], 2)
        self.assertAlmostEqual(df_stoich["7-norm"][0], 0.604895199)

        # Test whether the number of formula units affects result
        original_value = featurizer.featurize(Composition("FeO"))
        self.assertArrayAlmostEqual(featurizer.featurize(Composition("Fe0.5O0.5")), original_value)
        self.assertArrayAlmostEqual(featurizer.featurize(Composition("Fe2O2")), original_value)
Exemplo n.º 6
0
class DeBreuck2020Featurizer(modnet.featurizers.MODFeaturizer):
    """ Featurizer presets used for the paper 'Machine learning
    materials properties for small datasets' by Pierre-Paul De Breuck,
    Geoffroy Hautier & Gian-Marco Rignanese, arXiv:2004.14766 (2020).

    Uses most of the featurizers implemented by matminer at the time of
    writing with their default hyperparameters and presets.

    """
    from matminer.featurizers.composition import (
        AtomicOrbitals,
        AtomicPackingEfficiency,
        BandCenter,
        # CohesiveEnergy, - This descriptor was not used in the paper preset
        # ElectronAffinity, - This descriptor was not used in the paper preset
        ElectronegativityDiff,
        ElementFraction,
        ElementProperty,
        IonProperty,
        Miedema,
        OxidationStates,
        Stoichiometry,
        TMetalFraction,
        ValenceOrbital,
        YangSolidSolution,
    )
    from matminer.featurizers.structure import (
        # BagofBonds, - This descriptor was not used in the paper preset
        BondFractions,
        ChemicalOrdering,
        CoulombMatrix,
        DensityFeatures,
        EwaldEnergy,
        GlobalSymmetryFeatures,
        MaximumPackingEfficiency,
        # PartialRadialDistributionFunction,
        RadialDistributionFunction,
        SineCoulombMatrix,
        StructuralHeterogeneity,
        XRDPowderPattern,
    )

    from matminer.featurizers.site import (
        AGNIFingerprints,
        AverageBondAngle,
        AverageBondLength,
        BondOrientationalParameter,
        ChemEnvSiteFingerprint,
        CoordinationNumber,
        CrystalNNFingerprint,
        GaussianSymmFunc,
        GeneralizedRadialDistributionFunction,
        LocalPropertyDifference,
        OPSiteFingerprint,
        VoronoiFingerprint,
    )

    composition_featurizers = (
        AtomicOrbitals(),
        AtomicPackingEfficiency(),
        BandCenter(),
        ElementFraction(),
        ElementProperty.from_preset("magpie"),
        IonProperty(),
        Miedema(),
        Stoichiometry(),
        TMetalFraction(),
        ValenceOrbital(),
        YangSolidSolution(),
    )

    oxide_composition_featurizers = (
        ElectronegativityDiff(),
        OxidationStates(),
    )

    structure_featurizers = (
        DensityFeatures(),
        GlobalSymmetryFeatures(),
        RadialDistributionFunction(),
        CoulombMatrix(),
        # PartialRadialDistributionFunction(),
        SineCoulombMatrix(),
        EwaldEnergy(),
        BondFractions(),
        StructuralHeterogeneity(),
        MaximumPackingEfficiency(),
        ChemicalOrdering(),
        XRDPowderPattern(),
        # BagofBonds(),
    )
    site_featurizers = (
        AGNIFingerprints(),
        AverageBondAngle(VoronoiNN()),
        AverageBondLength(VoronoiNN()),
        BondOrientationalParameter(),
        ChemEnvSiteFingerprint.from_preset("simple"),
        CoordinationNumber(),
        CrystalNNFingerprint.from_preset("ops"),
        GaussianSymmFunc(),
        GeneralizedRadialDistributionFunction.from_preset("gaussian"),
        LocalPropertyDifference(),
        OPSiteFingerprint(),
        VoronoiFingerprint(),
    )

    def featurize_composition(self, df):
        """ Applies the preset composition featurizers to the input dataframe,
        renames some fields and cleans the output dataframe.

        """
        df = super().featurize_composition(df)

        _orbitals = {"s": 1, "p": 2, "d": 3, "f": 4}
        df['AtomicOrbitals|HOMO_character'] = df[
            'AtomicOrbitals|HOMO_character'].map(_orbitals)
        df['AtomicOrbitals|LUMO_character'] = df[
            'AtomicOrbitals|LUMO_character'].map(_orbitals)

        df['AtomicOrbitals|HOMO_element'] = df[
            'AtomicOrbitals|HOMO_element'].apply(
                lambda x: -1 if not isinstance(x, str) else Element(x).Z)
        df['AtomicOrbitals|LUMO_element'] = df[
            'AtomicOrbitals|LUMO_element'].apply(
                lambda x: -1 if not isinstance(x, str) else Element(x).Z)

        df = df.replace([np.inf, -np.inf, np.nan], 0)

        return modnet.featurizers.clean_df(df)

    def featurize_structure(self, df):
        """ Applies the preset structural featurizers to the input dataframe,
        renames some fields and cleans the output dataframe.

        """
        df = super().featurize_structure(df)

        dist = df[
            "RadialDistributionFunction|radial distribution function"].iloc[0][
                'distances'][:50]
        for i, d in enumerate(dist):
            _rdf_key = "RadialDistributionFunction|radial distribution function|d_{:.2f}".format(
                d)
            df[_rdf_key] = df[
                "RadialDistributionFunction|radial distribution function"].apply(
                    lambda x: x['distribution'][i])

        df = df.drop("RadialDistributionFunction|radial distribution function",
                     axis=1)

        _crystal_system = {
            "cubic": 1,
            "tetragonal": 2,
            "orthorombic": 3,
            "hexagonal": 4,
            "trigonal": 5,
            "monoclinic": 6,
            "triclinic": 7
        }

        def _int_map(x):
            if x == np.nan:
                return 0
            elif x:
                return 1
            else:
                return 0

        df["GlobalSymmetryFeatures|crystal_system"] = df[
            "GlobalSymmetryFeatures|crystal_system"].map(_crystal_system)
        df["GlobalSymmetryFeatures|is_centrosymmetric"] = df[
            "GlobalSymmetryFeatures|is_centrosymmetric"].map(_int_map)

        return modnet.featurizers.clean_df(df)

    def featurize_site(self, df):
        """ Applies the preset site featurizers to the input dataframe,
        renames some fields and cleans the output dataframe.

        """

        # rename some features for backwards compatibility with pretrained models
        aliases = {
            "GeneralizedRadialDistributionFunction": "GeneralizedRDF",
            "AGNIFingerprints": "AGNIFingerPrint",
            "BondOrientationalParameter": "BondOrientationParameter",
            "GaussianSymmFunc": "ChemEnvSiteFingerprint|GaussianSymmFunc",
        }
        df = super().featurize_site(df, aliases=aliases)
        df = df.loc[:, (df != 0).any(axis=0)]

        return modnet.featurizers.clean_df(df)
Exemplo n.º 7
0
class FUTURE_PROSPECTS_2021(featurizer.extendedMODFeaturizer):

    from matminer.featurizers.composition import (
        AtomicOrbitals,
        AtomicPackingEfficiency,
        BandCenter,
        CohesiveEnergy,
        ElectronAffinity,
        ElectronegativityDiff,
        ElementFraction,
        ElementProperty,
        IonProperty,
        Miedema,
        OxidationStates,
        Stoichiometry,
        TMetalFraction,
        ValenceOrbital,
        YangSolidSolution,
    )
    from matminer.featurizers.structure import (
        BagofBonds,
        BondFractions,
        ChemicalOrdering,
        CoulombMatrix,
        DensityFeatures,
        EwaldEnergy,
        GlobalSymmetryFeatures,
        MaximumPackingEfficiency,
        PartialRadialDistributionFunction,
        RadialDistributionFunction,
        SineCoulombMatrix,
        StructuralHeterogeneity,
        XRDPowderPattern,
    )

    from matminer.featurizers.site import (
        AGNIFingerprints,
        AverageBondAngle,
        AverageBondLength,
        BondOrientationalParameter,
        ChemEnvSiteFingerprint,
        CoordinationNumber,
        CrystalNNFingerprint,
        GaussianSymmFunc,
        GeneralizedRadialDistributionFunction,
        LocalPropertyDifference,
        OPSiteFingerprint,
        VoronoiFingerprint,
    )
    from matminer.featurizers.dos import (
        DOSFeaturizer,
        SiteDOS,
        Hybridization,
        DosAsymmetry,
    )
    from matminer.featurizers.bandstructure import (
        BandFeaturizer,
        BranchPointEnergy
    )

    composition_featurizers = (
        AtomicOrbitals(),
        AtomicPackingEfficiency(),
        BandCenter(),
        ElementFraction(),
        ElementProperty.from_preset("magpie"),
        IonProperty(),
        Miedema(),
        Stoichiometry(),
        TMetalFraction(),
        ValenceOrbital(),
        YangSolidSolution(),
    )

    oxid_composition_featurizers = (
        ElectronegativityDiff(),
        OxidationStates(),
    )

    structure_featurizers = (
        DensityFeatures(),
        GlobalSymmetryFeatures(),
        RadialDistributionFunction(),
        CoulombMatrix(),
        #PartialRadialDistributionFunction(), #Introduces a large amount of features
        SineCoulombMatrix(),
        EwaldEnergy(),
        BondFractions(),
        StructuralHeterogeneity(),
        MaximumPackingEfficiency(),
        ChemicalOrdering(),
        XRDPowderPattern(),
    )
    site_featurizers = (
        AGNIFingerprints(),
        AverageBondAngle(VoronoiNN()),
        AverageBondLength(VoronoiNN()),
        BondOrientationalParameter(),
        ChemEnvSiteFingerprint.from_preset("simple"),
        CoordinationNumber(),
        CrystalNNFingerprint.from_preset("ops"),
        GaussianSymmFunc(),
        GeneralizedRadialDistributionFunction.from_preset("gaussian"),
        LocalPropertyDifference(),
        OPSiteFingerprint(),
        VoronoiFingerprint(),
    )

    dos_featurizers = (
        DOSFeaturizer(),
        SiteDOS(),
        Hybridization()
    )

    band_featurizers = (
        BandFeaturizer(),
        BranchPointEnergy()
    )
    def __init__(self, n_jobs=None):
            self._n_jobs = n_jobs

    def featurize_composition(self, df):
        """Applies the preset composition featurizers to the input dataframe,
        renames some fields and cleans the output dataframe.
        """
        df = super().featurize_composition(df)

        _orbitals = {"s": 1, "p": 2, "d": 3, "f": 4}
        df["AtomicOrbitals|HOMO_character"] = df["AtomicOrbitals|HOMO_character"].map(
            _orbitals
        )
        df["AtomicOrbitals|LUMO_character"] = df["AtomicOrbitals|LUMO_character"].map(
            _orbitals
        )

        df["AtomicOrbitals|HOMO_element"] = df["AtomicOrbitals|HOMO_element"].apply(
            lambda x: -1 if not isinstance(x, str) else Element(x).Z
        )
        df["AtomicOrbitals|LUMO_element"] = df["AtomicOrbitals|LUMO_element"].apply(
            lambda x: -1 if not isinstance(x, str) else Element(x).Z
        )

        return clean_df(df)

    def featurize_structure(self, df):
        """Applies the preset structural featurizers to the input dataframe,
        renames some fields and cleans the output dataframe.
        """
        df = super().featurize_structure(df)

        dist = df["RadialDistributionFunction|radial distribution function"].iloc[0][
            "distances"
        ][:50]
        for i, d in enumerate(dist):
            _rdf_key = "RadialDistributionFunction|radial distribution function|d_{:.2f}".format(
                d
            )
            df[_rdf_key] = df[
                "RadialDistributionFunction|radial distribution function"
            ].apply(lambda x: x["distribution"][i])

        df = df.drop("RadialDistributionFunction|radial distribution function", axis=1)

        _crystal_system = {
            "cubic": 1,
            "tetragonal": 2,
            "orthorombic": 3,
            "hexagonal": 4,
            "trigonal": 5,
            "monoclinic": 6,
            "triclinic": 7,
        }

        def _int_map(x):
            if x == np.nan:
                return 0
            elif x:
                return 1
            else:
                return 0

        df["GlobalSymmetryFeatures|crystal_system"] = df[
            "GlobalSymmetryFeatures|crystal_system"
        ].map(_crystal_system)
        df["GlobalSymmetryFeatures|is_centrosymmetric"] = df[
            "GlobalSymmetryFeatures|is_centrosymmetric"
        ].map(_int_map)

        return clean_df(df)

    def featurize_dos(self, df):
        """Applies the presetdos featurizers to the input dataframe,
        renames some fields and cleans the output dataframe.
        """

        df = super().featurize_dos(df)


        hotencodeColumns = ["DOSFeaturizer|vbm_specie_1","DOSFeaturizer|cbm_specie_1"]

        one_hot = pd.get_dummies(df[hotencodeColumns])
        df = df.drop(hotencodeColumns, axis = 1).join(one_hot)

        _orbitals = {"s": 1, "p": 2, "d": 3, "f": 4}

        df["DOSFeaturizer|vbm_character_1"] = df[
           "DOSFeaturizer|vbm_character_1"
           ].map(_orbitals)
        df["DOSFeaturizer|cbm_character_1"] = df[
           "DOSFeaturizer|cbm_character_1"
           ].map(_orbitals)

        # Splitting one feature into several floating features
        # e.g. number;number;number into three columns
        splitColumns = ["DOSFeaturizer|cbm_location_1", "DOSFeaturizer|vbm_location_1"]

        for column in splitColumns:
            try:
                newColumns = df[column].str.split(";", n = 2, expand = True)
                for i in range(0,3):
                    df[column + "_" + str(i)] = np.array(newColumns[i]).astype(np.float)
            except:
                continue
        df = df.drop(splitColumns, axis=1)
        df = df.drop(["dos"], axis=1)
        return clean_df(df)

    def featurize_bandstructure(self, df):
        """Applies the preset band structure featurizers to the input dataframe,
        renames some fields and cleans the output dataframe.
        """

        df = super().featurize_bandstructure(df)

        def _int_map(x):
            if str(x) == "False":
                return 0
            elif str(x) == "True":
                return 1

        df["BandFeaturizer|is_gap_direct"] = df[
            "BandFeaturizer|is_gap_direct"
        ].map(_int_map)


        df = df.drop(["bandstructure"], axis=1)

        return clean_df(df)


    def featurize_site(self, df):
        """Applies the preset site featurizers to the input dataframe,
        renames some fields and cleans the output dataframe.
        """

        aliases = {
            "GeneralizedRadialDistributionFunction": "GeneralizedRDF",
            "AGNIFingerprints": "AGNIFingerPrint",
            "BondOrientationalParameter": "BondOrientationParameter",
            "GaussianSymmFunc": "ChemEnvSiteFingerprint|GaussianSymmFunc",
        }
        df = super().featurize_site(df, aliases=aliases)
        df = df.loc[:, (df != 0).any(axis=0)]

        return clean_df(df)
Exemplo n.º 8
0
def predict_log10_eps(
    target: Union[Structure, Composition],
    dielectric_type: str,
    model_type: str,
) -> float:
    """
    :param target: structure or composition to predict dielectric constants
    :param dielectric_type: "el" or "ion"
    :param model_type: "comp" or "comp_st"
    :return: Descriptor vector
    """
    if dielectric_type not in ["el", "ion"]:
        raise ValueError(
            f'Specify dielectric type "el" or "ion"\nInput: {dielectric_type}')
    if model_type not in ["comp", "comp_st"]:
        raise ValueError(
            f'Specify regression_type "comp" or "comp_st"\nInput: {model_type}'
        )

    if model_type == "comp":
        if isinstance(target, Structure):
            comp = target.composition
        else:
            comp = target
        comp_oxi = comp.add_charges_from_oxi_state_guesses()
        if dielectric_type == "el":
            ep = ScalarFeaturizer(ElementProperty.from_preset("matminer"),
                                  comp)
            valence = ScalarFeaturizer(ValenceOrbital(), comp)
            ion_prop = ScalarFeaturizer(IonProperty(), comp)
            en_diff = ScalarFeaturizer(ElectronegativityDiff(), comp_oxi)
            oxi_state = ScalarFeaturizer(OxidationStates.from_preset("deml"),
                                         comp_oxi)
            atomic_orbital = ScalarFeaturizer(AtomicOrbitals(), comp)
            descriptor = [
                ep.get_from_label("PymatgenData minimum X"),
                ep.get_from_label("PymatgenData range X"),
                ep.get_from_label("PymatgenData std_dev X"),
                ep.get_from_label("PymatgenData mean row"),
                ep.get_from_label("PymatgenData std_dev row"),
                ep.get_from_label("PymatgenData mean group"),
                ep.get_from_label("PymatgenData mean block"),
                ep.get_from_label("PymatgenData std_dev block"),
                ep.get_from_label("PymatgenData mean atomic_mass"),
                ep.get_from_label("PymatgenData std_dev atomic_mass"),
                ep.get_from_label("PymatgenData std_dev atomic_radius"),
                ep.get_from_label("PymatgenData minimum mendeleev_no"),
                ep.get_from_label("PymatgenData range mendeleev_no"),
                ep.get_from_label("PymatgenData std_dev mendeleev_no"),
                ep.get_from_label("PymatgenData mean thermal_conductivity"),
                ep.get_from_label("PymatgenData std_dev thermal_conductivity"),
                ep.get_from_label("PymatgenData mean melting_point"),
                ep.get_from_label("PymatgenData std_dev melting_point"),
                valence.get_from_label("avg s valence electrons"),
                valence.get_from_label("avg d valence electrons"),
                valence.get_from_label("frac s valence electrons"),
                valence.get_from_label("frac p valence electrons"),
                valence.get_from_label("frac d valence electrons"),
                ion_prop.get_from_label("avg ionic char"),
                TMetalFraction().featurize(comp)[0],
                en_diff.get_from_label("maximum EN difference"),
                en_diff.get_from_label("range EN difference"),
                en_diff.get_from_label("mean EN difference"),
                en_diff.get_from_label("std_dev EN difference"),
                BandCenter().featurize(comp)[0],
                oxi_state.get_from_label("std_dev oxidation state"),
                atomic_orbital.get_from_label("HOMO_energy"),
                atomic_orbital.get_from_label("LUMO_energy"),
                atomic_orbital.get_from_label("gap_AO"),
            ]
        elif dielectric_type == "ion":
            stoich = ScalarFeaturizer(Stoichiometry(), comp)
            ep = ScalarFeaturizer(ElementProperty.from_preset("matminer"),
                                  comp)
            valence = ScalarFeaturizer(ValenceOrbital(), comp)
            ion_prop = ScalarFeaturizer(IonProperty(), comp)
            en_diff = ScalarFeaturizer(ElectronegativityDiff(), comp_oxi)
            oxi_state = ScalarFeaturizer(OxidationStates.from_preset("deml"),
                                         comp_oxi)
            atomic_orbital = ScalarFeaturizer(AtomicOrbitals(), comp)
            at_pack_eff = ScalarFeaturizer(AtomicPackingEfficiency(), comp)
            descriptor = [
                stoich.get_from_label("3-norm"),
                stoich.get_from_label("5-norm"),
                ep.get_from_label("PymatgenData mean X"),
                ep.get_from_label("PymatgenData mean row"),
                ep.get_from_label("PymatgenData std_dev row"),
                ep.get_from_label("PymatgenData std_dev group"),
                ep.get_from_label("PymatgenData mean block"),
                ep.get_from_label("PymatgenData std_dev block"),
                ep.get_from_label("PymatgenData maximum atomic_mass"),
                ep.get_from_label("PymatgenData range atomic_mass"),
                ep.get_from_label("PymatgenData mean atomic_mass"),
                ep.get_from_label("PymatgenData std_dev atomic_mass"),
                ep.get_from_label("PymatgenData maximum atomic_radius"),
                ep.get_from_label("PymatgenData range atomic_radius"),
                ep.get_from_label("PymatgenData mean atomic_radius"),
                ep.get_from_label("PymatgenData std_dev atomic_radius"),
                ep.get_from_label("PymatgenData minimum mendeleev_no"),
                ep.get_from_label("PymatgenData mean mendeleev_no"),
                ep.get_from_label("PymatgenData std_dev mendeleev_no"),
                ep.get_from_label("PymatgenData mean thermal_conductivity"),
                ep.get_from_label("PymatgenData std_dev thermal_conductivity"),
                ep.get_from_label("PymatgenData mean melting_point"),
                ep.get_from_label("PymatgenData std_dev melting_point"),
                valence.get_from_label("avg s valence electrons"),
                valence.get_from_label("frac s valence electrons"),
                valence.get_from_label("frac p valence electrons"),
                valence.get_from_label("frac d valence electrons"),
                ion_prop.get_from_label("avg ionic char"),
                TMetalFraction().featurize(comp)[0],
                en_diff.get_from_label("minimum EN difference"),
                en_diff.get_from_label("range EN difference"),
                en_diff.get_from_label("mean EN difference"),
                en_diff.get_from_label("std_dev EN difference"),
                oxi_state.get_from_label("range oxidation state"),
                oxi_state.get_from_label("std_dev oxidation state"),
                atomic_orbital.get_from_label("LUMO_energy"),
                atomic_orbital.get_from_label("gap_AO"),
                at_pack_eff.get_from_label("mean simul. packing efficiency"),
                at_pack_eff.get_from_label(
                    "mean abs simul. packing efficiency"),
                at_pack_eff.get_from_label(
                    "dist from 1 clusters |APE| < 0.010"),
                at_pack_eff.get_from_label(
                    "dist from 3 clusters |APE| < 0.010"),
                at_pack_eff.get_from_label(
                    "dist from 5 clusters |APE| < 0.010"),
            ]
    elif model_type == "comp_st":
        if isinstance(target, Composition):
            raise ValueError(
                'comp_st (Using compositional and structural descriptor) is specified, '
                'but target is composition')
        comp: Composition = target.composition
        comp_oxi = comp.add_charges_from_oxi_state_guesses()
        target_orig = deepcopy(target)
        target.add_oxidation_state_by_guess()
        if dielectric_type == "el":
            ep = ScalarFeaturizer(ElementProperty.from_preset("matminer"),
                                  comp)
            valence = ScalarFeaturizer(ValenceOrbital(), comp)
            en_diff = ScalarFeaturizer(ElectronegativityDiff(), comp_oxi)
            atomic_orbital = ScalarFeaturizer(AtomicOrbitals(), comp)
            density = ScalarFeaturizer(DensityFeatures(), target)
            dist_btw_nn = MinimumRelativeDistances().featurize(target_orig)
            opsf = SiteFeaturizer(OPSiteFingerprint(), target)
            voro_fp = SiteFeaturizer(VoronoiFingerprint(use_symm_weights=True),
                                     target)
            gsf = SiteFeaturizer(GaussianSymmFunc(), target)
            lpd = SiteFeaturizer(
                LocalPropertyDifference.from_preset("ward-prb-2017"), target)
            descriptor = [
                ep.get_from_label("PymatgenData std_dev X"),
                ep.get_from_label("PymatgenData mean block"),
                ep.get_from_label("PymatgenData std_dev atomic_mass"),
                valence.get_from_label("frac d valence electrons"),
                TMetalFraction().featurize(comp)[0],
                en_diff.get_from_label("maximum EN difference"),
                en_diff.get_from_label("mean EN difference"),
                atomic_orbital.get_from_label("HOMO_energy"),
                atomic_orbital.get_from_label("LUMO_energy"),
                density.get_from_label("density"),
                np.mean(dist_btw_nn),
                np.std(dist_btw_nn),
                opsf.get_from_label_func("tetrahedral CN_4", np.max),
                opsf.get_from_label_func("rectangular see-saw-like CN_4",
                                         np.max),
                np.max([
                    EwaldSiteEnergy(accuracy=4).featurize(target, i)
                    for i in range(target.num_sites)
                ]),
                voro_fp.get_from_label_func("Voro_area_std_dev", np.max),
                voro_fp.get_from_label_func("Voro_area_std_dev", np.mean),
                voro_fp.get_from_label_func("Voro_dist_minimum", np.min),
                voro_fp.get_from_label_func("Voro_dist_minimum", np.std),
                gsf.get_from_label_func("G2_20.0", np.std),
                gsf.get_from_label_func("G2_80.0", np.max),
                gsf.get_from_label_func("G4_0.005_4.0_-1.0", np.mean),
                lpd.get_from_label_func("local difference in NdValence",
                                        np.mean),
                lpd.get_from_label_func("local difference in NValence",
                                        np.min),
                lpd.get_from_label_func("local difference in NValence",
                                        np.std),
                lpd.get_from_label_func("local difference in NdUnfilled",
                                        np.mean),
                lpd.get_from_label_func("local difference in NUnfilled",
                                        np.min),
                lpd.get_from_label_func("local difference in NUnfilled",
                                        np.mean),
                lpd.get_from_label_func("local difference in GSmagmom",
                                        np.mean)
            ]
        elif dielectric_type == "ion":
            ep = ScalarFeaturizer(ElementProperty.from_preset("matminer"),
                                  comp)
            atomic_orbitals = ScalarFeaturizer(AtomicOrbitals(), comp)
            density = ScalarFeaturizer(DensityFeatures(), target)
            str_het = ScalarFeaturizer(StructuralHeterogeneity(), target)
            opsf = SiteFeaturizer(OPSiteFingerprint(), target)
            voro_fp = SiteFeaturizer(VoronoiFingerprint(use_symm_weights=True),
                                     target)
            gsf = SiteFeaturizer(GaussianSymmFunc(), target)
            lpd = SiteFeaturizer(
                LocalPropertyDifference.from_preset("ward-prb-2017"), target)
            descriptor = [
                ep.get_from_label("PymatgenData std_dev row"),
                ep.get_from_label("PymatgenData mean thermal_conductivity"),
                ep.get_from_label("PymatgenData std_dev melting_point"),
                TMetalFraction().featurize(comp)[0],
                atomic_orbitals.get_from_label("gap_AO"),
                density.get_from_label("density"),
                density.get_from_label("packing fraction"),
                str_het.get_from_label("mean neighbor distance variation"),
                str_het.get_from_label("avg_dev neighbor distance variation"),
                opsf.get_from_label_func("sgl_bd CN_1", np.mean),
                opsf.get_from_label_func("bent 150 degrees CN_2", np.mean),
                opsf.get_from_label_func("linear CN_2", np.mean),
                opsf.get_from_label_func("trigonal planar CN_3", np.mean),
                opsf.get_from_label_func("pentagonal planar CN_5", np.std),
                opsf.get_from_label_func("octahedral CN_6", np.max),
                opsf.get_from_label_func("octahedral CN_6", np.std),
                opsf.get_from_label_func("q6 CN_12", np.mean),
                np.max([
                    EwaldSiteEnergy(accuracy=4).featurize(target, i)
                    for i in range(target.num_sites)
                ]),
                voro_fp.get_from_label_func("Symmetry_weighted_index_4",
                                            np.std),
                voro_fp.get_from_label_func("Voro_vol_maximum", np.mean),
                voro_fp.get_from_label_func("Voro_area_std_dev", np.mean),
                voro_fp.get_from_label_func("Voro_area_minimum", np.std),
                voro_fp.get_from_label_func("Voro_area_maximum", np.min),
                voro_fp.get_from_label_func("Voro_dist_std_dev", np.mean),
                gsf.get_from_label_func("G2_80.0", np.min),
                gsf.get_from_label_func("G4_0.005_4.0_1.0", np.std),
                lpd.get_from_label_func("local difference in Number", np.max),
                lpd.get_from_label_func("local difference in MendeleevNumber",
                                        np.max),
                lpd.get_from_label_func("local difference in MendeleevNumber",
                                        np.min),
                lpd.get_from_label_func("local difference in AtomicWeight",
                                        np.max),
                lpd.get_from_label_func("local difference in AtomicWeight",
                                        np.mean),
                lpd.get_from_label_func("local difference in MeltingT",
                                        np.mean),
                lpd.get_from_label_func("local difference in Row", np.max),
                lpd.get_from_label_func(
                    "local difference in Electronegativity", np.min),
                lpd.get_from_label_func("local difference in NValence",
                                        np.std),
                lpd.get_from_label_func("local difference in NsUnfilled",
                                        np.mean),
                lpd.get_from_label_func("local difference in NdUnfilled",
                                        np.max),
                lpd.get_from_label_func("local difference in NdUnfilled",
                                        np.std),
                lpd.get_from_label_func("local difference in NUnfilled",
                                        np.max),
                lpd.get_from_label_func("local difference in NUnfilled",
                                        np.min),
                lpd.get_from_label_func("local difference in NUnfilled",
                                        np.mean),
                lpd.get_from_label_func("local difference in NUnfilled",
                                        np.std),
                lpd.get_from_label_func("local difference in GSvolume_pa",
                                        np.max),
                lpd.get_from_label_func("local difference in GSvolume_pa",
                                        np.min),
                lpd.get_from_label_func("local difference in SpaceGroupNumber",
                                        np.max),
            ]
    with open(
            f"{os.path.dirname(__file__)}/{dielectric_type}_{model_type}.joblib",
            "rb") as fr:
        model: RandomForestRegressor = joblib.load(fr)
    with open(
            f"{os.path.dirname(__file__)}/{dielectric_type}_{model_type}_scaler.joblib",
            "rb") as fr:
        scaler: StandardScaler = joblib.load(fr)
    descriptor = scaler.transform([descriptor])
    return model.predict(descriptor)[0]
 def test_stoich(self):
     df_stoich = Stoichiometry(num_atoms=True).featurize_dataframe(
         self.df, col_id="composition")
     self.assertAlmostEqual(df_stoich["num atoms"][0], 5)
     self.assertAlmostEqual(df_stoich["0-norm"][0], 2)
     self.assertAlmostEqual(df_stoich["7-norm"][0], 0.604895199)
Exemplo n.º 10
0
                      'MeltingT', 'NsValence', 'NpValence', 'NdValence',
                      'NfValence', 'NValence', 'NsUnfilled', 'NpUnfilled',
                      'NdUnfilled', 'NfUnfilled', 'NUnfilled', 'GSvolume_pa',
                      'SpaceGroupNumber', 'GSbandgap', 'GSmagmom')

#The following features will be created by using matminer package.
featurizer = MultipleFeaturizer([
    SiteStatsFingerprint(CoordinationNumber().from_preset('VoronoiNN'),
                         stats=('mean', 'std_dev', 'minimum', 'maximum')),
    StructuralHeterogeneity(),
    ChemicalOrdering(),
    MaximumPackingEfficiency(),
    SiteStatsFingerprint(
        LocalPropertyDifference(properties=element_properties),
        stats=('mean', 'std_dev', 'minimum', 'maximum', 'range')),
    StructureComposition(Stoichiometry()),
    StructureComposition(ElementProperty.from_preset("magpie")),
    StructureComposition(ValenceOrbital(props=['frac'])),
    StructureComposition(IonProperty(fast=True))
])

#Generate VT based features from the material's crystal lat_params.
feature_data = featurizer.featurize_dataframe(df,
                                              col_id=['structure'],
                                              ignore_errors=True)
#"lat_params","compound possible" and "material_id" are not resonable physical features, so we drop these three columns
feature_data = feature_data.drop(
    ["structure", "compound possible", "material_id"], axis=1)
#write the data into a csv file for later use
feature_data.to_csv("data_delta_e_data.csv", index=False)
from sklearn.model_selection import KFold, cross_val_score