Exemplo n.º 1
0
Arquivo: main.py Projeto: Xin-20/Code
def video(zipname, html=None):
    fig, ax = plt.subplots()

    def plot_hour(hour):
        # data
        reader = zip_csv_iter(zipname)
        header = next(reader)
        cidx = header.index("country")
        timeidx = header.index("time")
        counts = defaultdict(int)
        w = geopandas.read_file(
            geopandas.datasets.get_path('naturalearth_lowres'))
        # no Antarctica
        w = w[w["continent"] != "Antarctica"]
        w["count"] = 0

        # plot the background
        ax.cla()
        w.plot(color="0.8", ax=ax)

        # populate counts
        for row in reader:
            if hour != None:
                if hour != int(row[timeidx].split(":")[0]):
                    continue
            counts[row[cidx]] += 1

        # data with count bigger than 0
        for country, count in counts.items():
            if country not in list(w["name"]):
                continue
            w["count"][w["name"] == country] = count

        w = w[w["count"] > 0]

        # plot the hour
        w.plot(ax=ax, column="count", cmap="Reds", scheme='quantiles')

    anim = FuncAnimation(fig, plot_hour, frames=24, interval=250)
    html_code = anim.to_html5_video()
    plt.close()
    with open(html, "w") as f:
        f.write(html_code)
Exemplo n.º 2
0
def visual_convolution(image, kernel, debug=False):
    fig = plt.figure()
    _image = np.pad(image, ((1, 1), (1, 1)), 'constant')  # padd with zeros
    output_image = np.copy(image)
    frames = [output_image]
    convolve(image, kernel, frames=frames)
    img = plt.imshow(np.copy(output_image),
                     animated=True,
                     cmap="gray",
                     norm=NoNorm())

    def update(f):
        img.set_array(f)
        return img

    ani = FuncAnimation(fig, update, frames=frames, interval=50)
    html = HTML(ani.to_html5_video())
    plt.close()
    display(html)
Exemplo n.º 3
0
    def animate(self, mode="js"):
        plt.ioff()
        heigth, width = self.background.shape
        ratio = width / heigth
        figure, ax = plt.subplots(figsize=(3 * ratio, 3))
        im = plt.imshow(self.background,
                        cmap=self.cmap,
                        norm=self.norm,
                        animated=True)
        title = ax.text(0.5,
                        0.90,
                        "",
                        bbox={
                            'facecolor': 'w',
                            'alpha': 0.5,
                            'pad': 5
                        },
                        transform=ax.transAxes,
                        ha="center")
        ax.axis('off')

        def update(i):
            data = self.frames[i]
            if isinstance(data, tuple):
                img, text = data
                title.set_text(text)
            else:
                img = data
            im.set_array(img)
            return im, title

        ani = FuncAnimation(figure,
                            update,
                            frames=len(self.frames),
                            interval=1000 / 60,
                            blit=True,
                            repeat=False)
        if mode == "html":
            return HTML(ani.to_html5_video())
        elif mode == "js":
            return HTML(ani.to_jshtml())
        elif mode == "plot":
            plt.show()
Exemplo n.º 4
0
    def view_game(board_history):
        """
        This is a helper function which takes a board history
        (i.e., a list of board states) and creates an animation of the game
        as it progresses.
        """

        fig, ax = plt.subplots()
        colors = ['black', 'blue', 'pink', 'white', 'red', 'yellow']
        cmap = matplotlib.colors.ListedColormap(colors)
        bounds = np.linspace(0, 5, 6)
        norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N)
        matrix = ax.matshow(board_history[0], cmap=cmap, norm=norm)

        def update(i):
            matrix.set_array(board_history[i])
            return matrix

        ani = FuncAnimation(fig, update, frames=len(board_history), interval=100)
        plt.show()
        return HTML(ani.to_html5_video())
Exemplo n.º 5
0
def animate(states, times=None, figsize=None, channel=None, vmin=0, vmax=1):
    backend = matplotlib.get_backend()
    matplotlib.use("nbAgg")
    fig, ax = plt.subplots(1, 1, figsize=figsize)
    
    def init():
        im = ax.imshow(states[0, channel].squeeze(), animated=True, cmap="magma", vmin=vmin, vmax=vmax)
        cbar = fig.colorbar(im)
        cbar.set_label("mV", rotation=0)
        return [im]

    def update(iteration):
        print("Rendering {}\t".format(iteration + 1), end="\r")
        im = ax.imshow(states[iteration, channel].squeeze(), animated=True, cmap="magma", vmin=vmin, vmax=vmax)
        if times is not None:
            ax.set_title("t: %d" % times[iteration])
        return [ax]

    animation = FuncAnimation(fig, update, frames=range(len(states)), init_func=init, blit=True)
    matplotlib.use(backend)
    return HTML(animation.to_html5_video())
Exemplo n.º 6
0
def animatedLineplot():

    fig, ax = plt.subplots()
    ln1, = ax.plot([], [], 'b-')
    ln2, = ax.plot([], [], 'r-')

    data_spain_ccaa = pd.read_csv('/warehouse/serie_historica_acumulados.csv',
                                  sep=',')
    data_spain_ccaa = data_spain_ccaa.drop(len(data_spain_ccaa) - 1)
    data_spain_ccaa['Casos '] = data_spain_ccaa['Casos '].fillna(0)
    data_spain_ccaa['Fallecidos'] = data_spain_ccaa['Fallecidos'].fillna(0)
    data_MD = data_spain_ccaa[data_spain_ccaa['CCAA Codigo ISO'].isin(
        ['MD'])][['Casos ', 'Fallecidos']].to_numpy().transpose().astype(int)
    data_AN = data_spain_ccaa[data_spain_ccaa['CCAA Codigo ISO'].isin(
        ['CT'])][['Casos ', 'Fallecidos']].to_numpy().transpose().astype(int)

    # GET HEADERS FROM UI, X AND Y. GET THE MAXIMUM VALUE AMONG ALL THE GIVEN HEADERS. CREATE UNA LINE FOR EACH HEADER.

    def init():
        ax.set_xlim(0, 15000)
        ax.set_ylim(0, 2000)
        return ln1, ln2,

    def update(num, data_MD, data_AN, line1, line2):
        line1.set_data(data_MD[..., :num])
        line2.set_data(data_AN[..., :num])
        return ln1, ln2,

    #Writer = animation.writers['ffmpeg']
    #writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800)

    ani = FuncAnimation(fig,
                        update,
                        50,
                        fargs=(data_MD, data_AN, ln1, ln2),
                        interval=100,
                        init_func=init,
                        blit=True)
    return ani.to_html5_video()
Exemplo n.º 7
0
    def make_animation(self):
        def init_func():
            self.plot_bars(0)

        interval = self.period_length / self.steps_per_period
        anim = FuncAnimation(self.fig,
                             self.anim_func,
                             range(len(self.df_values)),
                             init_func,
                             interval=interval)

        try:
            if self.html:
                ret_val = anim.to_html5_video()
                try:
                    from IPython.display import HTML
                    ret_val = HTML(ret_val)
                except ImportError:
                    pass
            else:
                ret_val = anim.save(self.filename,
                                    fps=self.fps,
                                    writer=self.writer)
        except Exception as e:
            message = str(e)
            # if self.extension != 'gif':
            #     message = f'''You do not have ffmpeg installed on your machine. Download
            #                 ffmpeg from here: https://www.ffmpeg.org/download.html.

            #                 Matplotlib's original error message below:\n
            #                 {str(e)}
            #                 '''
            # else:
            #     message = str(e)
            raise Exception(message)
        finally:
            plt.rcParams = self.orig_rcParams

        return ret_val
Exemplo n.º 8
0
    def make_animation(self):
        def init_func():
            self.plot_bars(0)

        interval = self.period_length / self.steps_per_period
        anim = FuncAnimation(self.fig,
                             self.anim_func,
                             range(len(self.df_values)),
                             init_func,
                             interval=interval)

        if self.html:
            html = anim.to_html5_video()
            plt.rcParams = self.orig_rcParams
            return html

        extension = self.filename.split('.')[-1]
        if extension == 'gif':
            anim.save(self.filename, fps=self.fps, writer='imagemagick')
        else:
            anim.save(self.filename, fps=self.fps)

        plt.rcParams = self.orig_rcParams
Exemplo n.º 9
0
def render(episode, env, filename):

    fig = plt.figure()
    img = plt.imshow(env.render(mode='rgb_array'))
    env.close()
    plt.axis('off')

    def animate(i):
        img.set_data(episode[i])
        return img,

    anim = FuncAnimation(fig,
                         animate,
                         frames=len(episode),
                         interval=24,
                         blit=True)
    vid = HTML(anim.to_html5_video())

    anim.save(filename + '.mp4')
    plt.close(fig)
    #!rm None0000000.png

    return vid
def video_from_images(image_files,
                      fps=5,
                      callback=None,
                      reverse=False,
                      dpi=72,
                      interpolation=None,
                      repeat_first=0,
                      repeat_last=0,
                      save=None,
                      repetitions=None,
                      crop=None,
                      snap_first=False):
    r"""Display a movie from a sequence of images.

    This renders the given images into a video to view inside the Jupyter
    notebook and/or save into a file.

    @param image_files
        Images to render into a video.
    @param fps
        Frames/images per second to show. Default is `5`.
    @param callback
        Optional callback called for each frame with the signature
        `callback(i, ax, ctrl)`, where `i` runs from `0` through the frame
        numbers, `ax` is the axes object, and `ctrl` the image control created
        by `ax.imshow()`.
    @param reverse
        If `True`, play the images in reverse order.
    @param dpi
        Dots per inch of the stored image. When set correctly, the image will
        be shown in its native resolution (i.e. without resizing).
    @param interpolation
        Pixel interpolation in case the rendered size is not exactly the image
        size. Default is `None`.
    @param repeat_first
        Number of extra repetitions of the first image. This adds additional
        time at the start. Default is `0`.
    @param repeat_last
        Number of extra repetitions of the last image. This adds additional
        time at the end, so that the result can be inspected a little longer.
        Default is `0`.
    @param save
        Optional filename for storing the resulting video.
    @param repetitions
        How often to repeat individual images. Should be a sequence of
        integers corresponding to the individual images. Missing elements are
        taken to be 1.
    @param crop
        4-tuple with the amount of cropping (in pixel) in order (left, botton,
        right, top).
    @param snap_first
        If `True`, save a snapshot of the first frame.
    """
    from IPython.display import HTML
    from matplotlib.animation import FuncAnimation
    if not image_files:
        raise ValueError("No images specified.")
    if reverse:
        image_files = list(reversed(image_files))
    if repetitions is not None:
        repeated = []
        for img, rep in zip_longest(image_files, repetitions, fillvalue=1):
            if img == 1:
                break
            repeated.extend([img] * rep)
        image_files = repeated
    ax, image_ctrl = plot_image(image_files[0],
                                dpi=dpi,
                                show=False,
                                animated=True,
                                interpolation=interpolation,
                                crop=crop)
    if snap_first and save:
        fname = op.expanduser(save)
        if fname.endswith(".mp4"):
            fname = "%s.png" % fname[:-4]
        os.makedirs(op.normpath(op.dirname(fname)), exist_ok=True)
        ax.figure.savefig(fname)

    def update(i):
        idx = clip(i - repeat_first, 0, len(image_files) - 1)
        image = plt.imread(image_files[idx])
        if crop:
            image = _crop(image, *crop)
        image_ctrl.set_array(image)
        if callback:
            callback(i, ax, image_ctrl)

    a = FuncAnimation(ax.figure,
                      update,
                      frames=len(image_files) + repeat_first + repeat_last,
                      interval=1000 / fps)
    v = a.to_html5_video()
    if save is not None:
        if "." not in op.basename(save):
            save += ".mp4"
        fname = op.expanduser(save)
        os.makedirs(op.normpath(op.dirname(fname)), exist_ok=True)
        a.save(fname)
    plt.close(ax.figure)
    return HTML(v)
Exemplo n.º 11
0
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.animation import FuncAnimation
from IPython import display

## Khusus Jupyter nootbook
# Review Figure
fig = plt.figure()

plt.xlim(0, 4)
plt.ylim(-2, 2)

# Animasi
line = plt.plot([])[0]


def animated(i):
    x = np.linspace(0, 4, 1000)
    y = np.sin(2 * np.pi * (x - .1 * i))
    line.set_data(x, y)
    return line


anim = FuncAnimation(fig, animated, frames=200, interval=20)
video = anim.to_html5_video()
html = display.HTML(video)

display.display(html)

plt.close()
Exemplo n.º 12
0
def render_animation(data, skeleton, fps, output='interactive', bitrate=1000):
    """
    Render or show an animation. The supported output modes are:
     -- 'interactive': display an interactive figure
                       (also works on notebooks if associated with %matplotlib inline)
     -- 'html': render the animation as HTML5 video. Can be displayed in a notebook using HTML(...).
     -- 'filename.mp4': render and export the animation as an h264 video (requires ffmpeg).
     -- 'filename.gif': render and export the animation a gif file (requires imagemagick).
    """
    x = 0
    y = 1
    z = 2
    radius = torch.max(skeleton.offsets()).item(
    ) * 5  # Heuristic that works well with many skeletons

    skeleton_parents = skeleton.parents()

    plt.ioff()
    fig = plt.figure(figsize=(4, 4))
    ax = fig.add_subplot(1, 1, 1, projection='3d')
    ax.view_init(elev=20., azim=30)

    ax.set_xlim3d([-radius / 2, radius / 2])
    ax.set_zlim3d([0, radius])
    ax.set_ylim3d([-radius / 2, radius / 2])
    ax.set_aspect('auto')
    ax.set_xticklabels([])
    ax.set_yticklabels([])
    ax.set_zticklabels([])
    ax.dist = 7.5

    lines = []
    initialized = False

    trajectory = data[:, 0, [0, 2]]
    avg_segment_length = np.mean(
        np.linalg.norm(np.diff(trajectory, axis=0), axis=1)) + 1e-3
    draw_offset = int(25 / avg_segment_length)
    spline_line, = ax.plot(*trajectory.T)
    camera_pos = trajectory
    height_offset = np.min(data[:, :, 1])  # Min height
    data = data.copy()
    data[:, :, 1] -= height_offset

    def update(frame):
        nonlocal initialized
        ax.set_xlim3d([
            -radius / 2 + camera_pos[frame, 0],
            radius / 2 + camera_pos[frame, 0]
        ])
        ax.set_ylim3d([
            -radius / 2 + camera_pos[frame, 1],
            radius / 2 + camera_pos[frame, 1]
        ])

        positions_world = data[frame]
        for i in range(positions_world.shape[0]):
            if skeleton_parents[i] == -1:
                continue
            if not initialized:
                col = 'red' if i in skeleton.joints_right(
                ) else 'black'  # As in audio cables :)
                lines.append(
                    ax.plot([
                        positions_world[i, x],
                        positions_world[skeleton_parents[i], x]
                    ], [
                        positions_world[i, y],
                        positions_world[skeleton_parents[i], y]
                    ], [
                        positions_world[i, z],
                        positions_world[skeleton_parents[i], z]
                    ],
                            zdir='y',
                            c=col))
            else:
                lines[i - 1][0].set_xdata(
                    np.array([
                        positions_world[i, x],
                        positions_world[skeleton_parents[i], x]
                    ]))
                lines[i - 1][0].set_ydata(
                    np.array([
                        positions_world[i, y],
                        positions_world[skeleton_parents[i], y]
                    ]))
                lines[i - 1][0].set_3d_properties([
                    positions_world[i, z], positions_world[skeleton_parents[i],
                                                           z]
                ],
                                                  zdir='y')
        l = max(frame - draw_offset, 0)
        r = min(frame + draw_offset, trajectory.shape[0])
        spline_line.set_xdata(trajectory[l:r, 0])
        spline_line.set_ydata(np.zeros_like(trajectory[l:r, 0]))
        spline_line.set_3d_properties(trajectory[l:r, 1], zdir='y')
        initialized = True
        if output == 'interactive' and frame == data.shape[0] - 1:
            plt.close('all')

    fig.tight_layout()
    anim = FuncAnimation(fig,
                         update,
                         frames=np.arange(0, data.shape[0]),
                         interval=1000 / fps,
                         repeat=True)
    if output == 'interactive':
        plt.show()
        return anim
    elif output == 'html':
        return anim.to_html5_video()
    elif output.endswith('.mp4'):
        Writer = writers['ffmpeg']
        writer = Writer(fps=fps, metadata={}, bitrate=bitrate)
        anim.save(output, writer=writer)
    elif output.endswith('.gif'):
        anim.save(output, dpi=80, writer='imagemagick')
    else:
        raise ValueError(
            'Unsupported output format (only html, .mp4, and .gif are supported)'
        )
    plt.close()
Exemplo n.º 13
0
    def show(
            self,
            t,
            cmap="plasma",
            res=300,
            interval=75,
            file=None,
            figsize=(3, 3),
            html5_video=True,
            window_pad=1.0,
    ):
        """Visualize the Keplerian system.

        Args:
            t (scalar or vector): The time(s) at which to evaluate the orbit and
                the map in units of :py:attr:`time_unit`.
            cmap (string or colormap instance, optional): The matplotlib colormap
                to use. Defaults to ``plasma``.
            res (int, optional): The resolution of the map in pixels on a
                side. Defaults to 300.
            figsize (tuple, optional): Figure size in inches. Default is
                (3, 3) for orthographic maps and (7, 3.5) for rectangular
                maps.
            interval (int, optional): Interval between frames in milliseconds
                (animated maps only). Defaults to 75.
            file (string, optional): The file name (including the extension)
                to save the animation to (animated maps only). Defaults to None.
            html5_video (bool, optional): If rendering in a Jupyter notebook,
                display as an HTML5 video? Default is True. If False, displays
                the animation using Javascript (file size will be larger.)
            window_pad (float, optional): Padding around the primary in units
                of the primary radius. Bodies outside of this window will be
                cropped. Default is 1.0.
        """
        # Not yet implemented
        if self._primary._map.nw is not None:  # pragma: no cover
            raise NotImplementedError(
                "Method not implemented for spectral maps.")

        # Render the maps & get the orbital positions
        if self._rv:
            self._primary.map._set_RV_filter()
            for sec in self._secondaries:
                sec.map._set_RV_filter()
        img_pri, img_sec, x, y, z = self.ops.render(
            math.reshape(math.to_array_or_tensor(t), [-1]) * self._time_factor,
            res,
            self._primary._r,
            self._primary._m,
            self._primary._prot,
            self._primary._t0,
            self._primary._theta0,
            self._primary._map._amp,
            self._primary._map._inc,
            self._primary._map._obl,
            self._primary._map._y,
            self._primary._map._u,
            self._primary._map._f,
            self._primary._map._alpha,
            math.to_array_or_tensor([sec._r for sec in self._secondaries]),
            math.to_array_or_tensor([sec._m for sec in self._secondaries]),
            math.to_array_or_tensor([sec._prot for sec in self._secondaries]),
            math.to_array_or_tensor([sec._t0 for sec in self._secondaries]),
            math.to_array_or_tensor([sec._theta0
                                     for sec in self._secondaries]),
            self._get_periods(),
            math.to_array_or_tensor([sec._ecc for sec in self._secondaries]),
            math.to_array_or_tensor([sec._w for sec in self._secondaries]),
            math.to_array_or_tensor([sec._Omega for sec in self._secondaries]),
            math.to_array_or_tensor([sec._inc for sec in self._secondaries]),
            math.to_array_or_tensor(
                [sec._map._amp for sec in self._secondaries]),
            math.to_array_or_tensor(
                [sec._map._inc for sec in self._secondaries]),
            math.to_array_or_tensor(
                [sec._map._obl for sec in self._secondaries]),
            math.to_array_or_tensor([sec._map._y
                                     for sec in self._secondaries]),
            math.to_array_or_tensor([sec._map._u
                                     for sec in self._secondaries]),
            math.to_array_or_tensor([sec._map._f
                                     for sec in self._secondaries]),
            math.to_array_or_tensor(
                [sec._map._alpha for sec in self._secondaries]),
        )

        # Convert to units of the primary radius
        fac = np.reshape([sec._length_factor for sec in self._secondaries],
                         [-1, 1])
        fac = fac * self._primary._r
        x, y, z = x / fac, y / fac, z / fac
        r = math.to_array_or_tensor([sec._r for sec in self._secondaries])
        r = r / self._primary._r

        # Evaluate if needed
        if config.lazy:
            img_pri = img_pri.eval()
            img_sec = img_sec.eval()
            x = x.eval()
            y = y.eval()
            z = z.eval()
            r = r.eval()

        # We need this to be of shape (nplanet, nframe)
        x = x.T
        y = y.T
        z = z.T

        # Ensure we have an array of frames
        if len(img_pri.shape) == 3:
            nframes = img_pri.shape[0]
        else:  # pragma: no cover
            nframes = 1
            img_pri = np.reshape(img_pri, (1, ) + img_pri.shape)
            img_sec = np.reshape(img_sec, (1, ) + img_sec.shape)
        animated = nframes > 1

        # Set up the plot
        fig, ax = plt.subplots(1, figsize=figsize)
        ax.axis("off")
        ax.set_xlim(-1.0 - window_pad, 1.0 + window_pad)
        ax.set_ylim(-1.0 - window_pad, 1.0 + window_pad)

        # Render the first frame
        img = [None for n in range(1 + len(self._secondaries))]
        circ = [None for n in range(1 + len(self._secondaries))]
        extent = np.array([-1.0, 1.0, -1.0, 1.0])
        img[0] = ax.imshow(
            img_pri[0],
            origin="lower",
            extent=extent,
            cmap=cmap,
            interpolation="none",
            vmin=np.nanmin(img_pri),
            vmax=np.nanmax(img_pri),
            animated=animated,
            zorder=0.0,
        )
        circ[0] = plt.Circle((0, 0),
                             1,
                             color="k",
                             fill=False,
                             zorder=1e-3,
                             lw=2)
        ax.add_artist(circ[0])
        for i, _ in enumerate(self._secondaries):
            extent = np.array([x[i, 0], x[i, 0], y[i, 0], y[i, 0]
                               ]) + (r[i] * np.array([-1.0, 1.0, -1.0, 1.0]))
            img[i + 1] = ax.imshow(
                img_sec[i, 0],
                origin="lower",
                extent=extent,
                cmap=cmap,
                interpolation="none",
                vmin=np.nanmin(img_sec),
                vmax=np.nanmax(img_sec),
                animated=animated,
                zorder=z[i, 0],
            )
            circ[i] = plt.Circle(
                (x[i, 0], y[i, 0]),
                r[i],
                color="k",
                fill=False,
                zorder=z[i, 0] + 1e-3,
                lw=2,
            )
            ax.add_artist(circ[i])

        # Animation
        if animated:

            def updatefig(k):

                # Update Primary map
                img[0].set_array(img_pri[k])

                # Update Secondary maps & positions
                for i, _ in enumerate(self._secondaries):
                    extent = np.array([x[i, k], x[i, k], y[i, k], y[i, k]]) + (
                        r[i] * np.array([-1.0, 1.0, -1.0, 1.0]))
                    if np.any(np.abs(extent) < 1.0 + window_pad):
                        img[i + 1].set_array(img_sec[i, k])
                        img[i + 1].set_extent(extent)
                        img[i + 1].set_zorder(z[i, k])
                        circ[i].center = (x[i, k], y[i, k])
                        circ[i].set_zorder(z[i, k] + 1e-3)

                return img + circ

            ani = FuncAnimation(fig,
                                updatefig,
                                interval=interval,
                                blit=False,
                                frames=nframes)

            # Business as usual
            if (file is not None) and (file != ""):
                if file.endswith(".mp4"):
                    ani.save(file, writer="ffmpeg")
                elif file.endswith(".gif"):
                    ani.save(file, writer="imagemagick")
                else:  # pragma: no cover
                    # Try and see what happens!
                    ani.save(file)
                plt.close()
            else:  # pragma: no cover
                try:
                    if "zmqshell" in str(type(get_ipython())):
                        plt.close()
                        if html5_video:
                            display(HTML(ani.to_html5_video()))
                        else:
                            display(HTML(ani.to_jshtml()))
                    else:
                        raise NameError("")
                except NameError:
                    plt.show()
                    plt.close()

            # Matplotlib generates an annoying empty
            # file when producing an animation. Delete it.
            try:
                os.remove("None0000000.png")
            except FileNotFoundError:
                pass

        else:

            if (file is not None) and (file != ""):
                fig.savefig(file)
                plt.close()
            else:  # pragma: no cover
                plt.show()

        if self._rv:
            self._primary.map._unset_RV_filter()
            for sec in self._secondaries:
                sec.map._unset_RV_filter()
Exemplo n.º 14
0
def get_html_video(animation: FuncAnimation):
    import matplotlib.pyplot as plt
    plt.rcParams['animation.ffmpeg_path'] = 'C:/FFmpeg/bin/ffmpeg.exe'
    return animation.to_html5_video()
Exemplo n.º 15
0
def visualize_path(M, p):
    # p is the path
    
    from IPython.display import HTML
    from matplotlib.animation import FuncAnimation
    from matplotlib.patches import Rectangle
    import matplotlib.pyplot as plt
    import numpy as np

    n = 2
    T = 5
    D = 0.4

    def interpolate(init, final):
        return np.tile(init, (1, T)) + (final - init) * np.linspace(0, 1, T)

    m, n = M.shape

    def ids(l):
        return [l // n, l % n]

    def flip(t):
        return [t[1], t[0]]

    ps = np.zeros((2, T * (len(p)-1)))
    for i in range(len(p)-1):
        u, v = p[i], p[i+1]
        ucoords = np.array(flip(ids(u))).reshape((2, 1))
        vcoords = np.array(flip(ids(v))).reshape((2, 1))
        ps[:, i*T:T*(i+1)] = interpolate(ucoords, vcoords)


    # from http://python4econ.blogspot.com/2013/03/matlabs-cylinder-command-in-python.html
    def cylinder(r, n):
        """
        Returns the unit cylinder that corresponds to the curve r.
        INPUTS:  r - a vector of radii
                 n - number of coordinates to return for each element in r

        OUTPUTS: x,y,z - coordinates of points
        """

        # ensure that r is a column vector
        r = np.atleast_2d(r)
        r_rows, r_cols = r.shape

        if r_cols > r_rows:
            r = r.T
        # find points along x and y axes
        points = np.linspace(0, 2 * np.pi, n + 1)
        x = np.cos(points) * r
        y = np.sin(points) * r

        # find points along z axis
        rpoints = np.atleast_2d(np.linspace(0, 1, len(r)))
        z = np.ones((1, n + 1)) * rpoints.T

        return x, y, z


    x, y, z = cylinder(D / 2, 100)
    x = x.squeeze()
    y = y.squeeze()
    z = z.squeeze()

    fig, ax = plt.subplots(figsize=(10, 10))
    plt.close(fig)

    ax.axis("equal")
    #ax.axis([-1.5, 1.5, -1.5, 1.5])
    p_data = ax.plot(ps[0, :], ps[1, :], color="C0")[0]
    ax.scatter(ps[0, :], ps[1, :], color="C0", marker=".")

    ax.imshow(colored(M, default_cmap))
    def update(i):
        p_data.set_data(ps[0, i] + x, ps[1, i] + y)
        ax.set_title(f"i = {i}")


    ani = FuncAnimation(fig, update, interval=100, frames=T*(len(p) - 1))
    return HTML(ani.to_html5_video())
    miny = 25
    maxx = -60
    maxy = 52
    covid_map_data = select_data_within_bounds(covid_data, minx, miny, maxx, maxy)
    map_bounded = True

mpl.rcParams['animation.embed_limit'] = 200
plot_dates = sorted(list(set(covid_data[covid_data.index.get_level_values("date") > start_date].index.get_level_values("date"))))
#dates = plot_dates[plot_dates.index("2020-03-17"):]
dates = plot_dates[31*3*-1 -1::3]
keys.append("Daily Cases per Million MA")
keys.append("Daily Deaths per Million MA")
for key in keys:
    val = covid_map_data
    vmax = val[key][val.index.get_level_values("date").isin(dates)].max()
    val[key] = val[key].astype(float)
    fig, ax = plt.subplots(figsize=(18,8),
        subplot_kw = {'aspect': 'equal'})   
    plt.rcParams.update({"font.size": 30})
    plt.xticks(fontsize = 25)
    plt.yticks(fontsize = 25)
    frames=[i for i in range(len(dates))]
    anim = FuncAnimation(fig, plot_map, frames = frames, 
                         blit = False, init_func = init, interval=300,
                         fargs = (ax, val, vmax, key))

    with open(key.replace("/", "-")+ ".html", "w") as f:
        print(anim.to_html5_video(), file=f)
    
    plt.close()
Exemplo n.º 17
0
def create_playback_animation(
    telemetry,
    filename="playback.html",
    labels=True,
    disable_labels_after=None,
    label_players=[],
    dead_players=True,
    dead_player_labels=False,
    zoom=False,
    zoom_edge_buffer=0.5,
    use_hi_res=False,
    color_teams=True,
    highlight_teams=[],
    highlight_players=[],
    highlight_color="#FFFF00",
    highlight_winner=False,
    label_highlights=True,
    care_packages=True,
    damage=True,
    end_frames=20,
    size=5,
    dpi=100,
    interpolate=True,
    interval=1,
    fps=30,
):
    """Create a playback animation from telemetry data.

    Using matplotlib's animation library, create an HTML5 animation saved to
    disk relying on external ``ffmpeg`` library to create the video.

    To view the animation, open the resulting file in your browser.

    :param telemetry: an Telemetry instance
    :param filename: a file to generate for the animation (default
        "playback.html")
    :param bool labels: whether to label players by name
    :param int disable_labels_after: if passed, turns off player labels
        after number of seconds elapsed in game
    :param list label_players: a list of strings of player names that
        should be labeled
    :param bool dead_players: whether to mark dead players
    :param list dead_player_labels: a list of strings of players that
        should be labeled when dead
    :param bool zoom: whether to zoom with the circles through the playback
    :param float zoom_edge_buffer: how much to buffer the blue circle edge
        when zooming
    :param bool use_hi_res: whether to use the hi-res image, best to be set
        to True when using zoom
    :param bool color_teams: whether to color code different teams
    :param list highlight_teams: a list of strings of player names whose
        teams should be highlighted
    :param list highlight_players: a list of strings of player names who
        should be highlighted
    :param str highlight_color: a color to use for highlights
    :param bool highlight_winner: whether to highlight the winner(s)
    :param bool label_highlights: whether to label the highlights
    :param bool care_packages: whether to show care packages
    :param bool damage: whether to show PvP damage
    :param int end_frames: the number of extra end frames after game has
        been completed
    :param int size: the size of the resulting animation frame
    :param int dpi: the dpi to use when processing the animation
    :param bool interpolate: use linear interpolation to get frames with
        second-interval granularity
    :param int interval: interval between gameplay frames in seconds
    :param int fps: the frames per second for the animation
    """

    # Extract data
    positions = telemetry.player_positions()
    circles = telemetry.circle_positions()
    rankings = telemetry.rankings()
    winner = telemetry.winner()
    killed = telemetry.killed()
    rosters = telemetry.rosters()
    damages = telemetry.player_damages()
    package_spawns = telemetry.care_package_positions(land=False)
    package_lands = telemetry.care_package_positions(land=True)
    map_id = telemetry.map_id()
    mapx, mapy = map_dimensions[map_id]
    all_times = []
    for player, pos in positions.items():
        for p in pos:
            all_times.append(int(p[0]))
    all_times = sorted(list(set(all_times)))

    if highlight_winner:
        for player in winner:
            highlight_players.append(player)
        highlight_players = list(set(highlight_players))

    if highlight_teams is not None:
        for team_player in highlight_teams:
            for team_id, roster in rosters.items():
                if team_player in roster:
                    for player in roster:
                        highlight_players.append(player)
                    break

        highlight_players = list(set(highlight_players))

    if label_highlights:
        for player in highlight_players:
            label_players.append(player)
    label_players = list(set(label_players))

    team_colors = None
    if color_teams:
        # Randomly select colors from the pre-defined palette
        colors = COLORS
        idx = list(range(len(colors)))
        random.shuffle(idx)
        team_colors = {}
        count = 0
        for team_id, roster in rosters.items():
            for player in roster:
                team_colors[player] = colors[idx[count]]
            count += 1

    # Get the max "frame number"
    maxlength = 0
    for player, pos in positions.items():
        try:
            if pos[-1][0] > maxlength:
                maxlength = pos[-1][0]
        except IndexError:
            continue

    if interpolate:
        maxlength = max(all_times)
    else:
        maxlength = max([maxlength, len(circles)])

    # Initialize the plot and artist objects
    fig = plt.figure(frameon=False, dpi=dpi)
    ax = fig.add_axes([0, 0, 1, 1])
    ax.axis("off")

    if use_hi_res:
        if map_id == "Savage_Main":
            map_image = map_id + ".png"
        else:
            map_image = map_id + ".jpg"
    else:
        map_image = map_id + "_lowres.jpg"
    img_path = os.path.join(MAP_ASSET_PATH, map_image)
    try:
        img = mpimg.imread(img_path)
    except FileNotFoundError:
        raise FileNotFoundError(
            "High resolution images not included in package.\n"
            "Download images from https://github.com/pubg/api-assets/tree/master/Assets/Maps\n"
            "and place in folder: " + MAP_ASSET_PATH)
    ax.imshow(img, extent=[0, mapx, 0, mapy])

    players = ax.scatter(-10000,
                         -10000,
                         marker="o",
                         c="w",
                         edgecolor="k",
                         s=60,
                         linewidths=1,
                         zorder=20)
    deaths = ax.scatter(-10000,
                        -10000,
                        marker="X",
                        c="r",
                        edgecolor="k",
                        s=60,
                        linewidths=1,
                        alpha=0.5,
                        zorder=10)

    if highlight_players or highlight_teams:
        highlights = ax.scatter(-10000,
                                -10000,
                                marker="*",
                                c=highlight_color,
                                edgecolor="k",
                                s=180,
                                linewidths=1,
                                zorder=25)
        highlights_deaths = ax.scatter(-10000,
                                       -10000,
                                       marker="X",
                                       c=highlight_color,
                                       edgecolor="k",
                                       s=60,
                                       linewidths=1,
                                       zorder=15)

    if labels:
        if label_players is not None:
            name_labels = {
                player_name: ax.text(0, 0, player_name, size=8, zorder=19)
                for player_name in positions if player_name in label_players
            }
        else:
            name_labels = {
                player_name: ax.text(0, 0, player_name, size=8, zorder=19)
                for player_name in positions
            }
        for label in name_labels.values():
            label.set_path_effects(
                [patheffects.withStroke(linewidth=2, foreground="w")])

    blue_circle = plt.Circle((0, 0),
                             0,
                             edgecolor="b",
                             linewidth=2,
                             fill=False,
                             zorder=5)
    white_circle = plt.Circle((0, 0),
                              0,
                              edgecolor="w",
                              linewidth=2,
                              fill=False,
                              zorder=6)
    red_circle = plt.Circle((0, 0),
                            0,
                            color="r",
                            edgecolor=None,
                            lw=0,
                            fill=True,
                            alpha=0.3,
                            zorder=7)

    care_package_spawns, = ax.plot(-10000,
                                   -10000,
                                   marker="s",
                                   c="w",
                                   markerfacecoloralt="w",
                                   fillstyle="bottom",
                                   mec="k",
                                   markeredgewidth=0.5,
                                   markersize=10,
                                   lw=0,
                                   zorder=8)
    care_package_lands, = ax.plot(-10000,
                                  -10000,
                                  marker="s",
                                  c="r",
                                  markerfacecoloralt="b",
                                  fillstyle="bottom",
                                  mec="k",
                                  markeredgewidth=0.5,
                                  markersize=10,
                                  lw=0,
                                  zorder=9)

    damage_slots = 50
    damage_lines = []
    for k in range(damage_slots):
        dline, = ax.plot(-10000,
                         -10000,
                         marker="x",
                         c="r",
                         mec="r",
                         markeredgewidth=5,
                         markersize=10,
                         lw=2,
                         markevery=[1],
                         alpha=0.5,
                         zorder=50)
        damage_lines.append(dline)

    ax.add_patch(blue_circle)
    ax.add_patch(white_circle)
    ax.add_patch(red_circle)

    fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
    fig.set_size_inches((size, size))

    ax.set_xlim([0, mapx])
    ax.set_ylim([0, mapy])

    # Frame init function
    def init():
        if labels:
            if highlight_players or highlight_teams:
                updates = players, deaths, highlights, highlights_deaths, blue_circle, red_circle, white_circle, *tuple(
                    name_labels.values())
            else:
                updates = players, deaths, blue_circle, red_circle, white_circle, *tuple(
                    name_labels.values())
        else:
            if highlight_players or highlight_teams:
                updates = players, deaths, highlights, highlights_deaths, blue_circle, red_circle, white_circle
            else:
                updates = players, deaths, blue_circle, red_circle, white_circle
        if care_packages:
            updates = *updates, care_package_lands, care_package_spawns
        if damage:
            updates = *updates, *damage_lines
        return updates

    def interpolate_coords(t, coords, tidx, vidx, step=False):
        inter = False
        for idx, coord in enumerate(coords):
            if coord[tidx] > t:
                inter = True
                break

        if not inter:
            return coords[-1][vidx]

        if idx == 0:
            return coords[0][vidx]
        else:
            v0 = coords[idx - 1][vidx]
            t0 = coords[idx - 1][tidx]

        v1 = coords[idx][vidx]
        t1 = coords[idx][tidx]

        if step:
            return v1
        else:
            return v0 + (t - t0) * (v1 - v0) / (t1 - t0)

    # Frame update function
    def update(frame):
        logging.info("Processing frame {frame}".format(frame=frame))
        try:
            if interpolate:
                blue_circle.center = (
                    interpolate_coords(frame, circles["blue"], 0, 1),
                    mapy - interpolate_coords(frame, circles["blue"], 0, 2))
                red_circle.center = (
                    interpolate_coords(frame, circles["red"], 0, 1,
                                       True), mapy -
                    interpolate_coords(frame, circles["red"], 0, 2, True))
                white_circle.center = (
                    interpolate_coords(frame, circles["white"], 0, 1,
                                       True), mapy -
                    interpolate_coords(frame, circles["white"], 0, 2, True))

                blue_circle.set_radius(
                    interpolate_coords(frame, circles["blue"], 0, 4))
                red_circle.set_radius(
                    interpolate_coords(frame, circles["red"], 0, 4, True))
                white_circle.set_radius(
                    interpolate_coords(frame, circles["white"], 0, 4, True))
            else:
                blue_circle.center = circles["blue"][frame][
                    1], mapy - circles["blue"][frame][2]
                red_circle.center = circles["red"][frame][
                    1], mapy - circles["red"][frame][2]
                white_circle.center = circles["white"][frame][
                    1], mapy - circles["white"][frame][2]

                blue_circle.set_radius(circles["blue"][frame][4])
                red_circle.set_radius(circles["red"][frame][4])
                white_circle.set_radius(circles["white"][frame][4])
        except IndexError:
            pass

        xlim = ax.get_xlim()
        ylim = ax.get_ylim()

        xwidth = xlim[1] - xlim[0]
        ywidth = ylim[1] - ylim[0]

        if zoom:
            try:
                if interpolate:
                    margin_offset = (1 +
                                     zoom_edge_buffer) * interpolate_coords(
                                         frame, circles["blue"], 0, 4)
                    xmin = max([
                        0,
                        interpolate_coords(frame, circles["blue"], 0, 1) -
                        margin_offset
                    ])
                    xmax = min([
                        mapx,
                        interpolate_coords(frame, circles["blue"], 0, 1) +
                        margin_offset
                    ])
                    ymin = max([
                        0, mapy -
                        interpolate_coords(frame, circles["blue"], 0, 2) -
                        margin_offset
                    ])
                    ymax = min([
                        mapy, mapy -
                        interpolate_coords(frame, circles["blue"], 0, 2) +
                        margin_offset
                    ])
                else:
                    margin_offset = (
                        1 + zoom_edge_buffer) * circles["blue"][frame][4]
                    xmin = max([0, circles["blue"][frame][1] - margin_offset])
                    xmax = min(
                        [mapx, circles["blue"][frame][1] + margin_offset])
                    ymin = max(
                        [0, mapy - circles["blue"][frame][2] - margin_offset])
                    ymax = min([
                        mapy, mapy - circles["blue"][frame][2] + margin_offset
                    ])

                # ensure full space taken by map
                if xmax - xmin >= ymax - ymin:
                    if ymin == 0:
                        ymax = ymin + (xmax - xmin)
                    elif ymax == mapy:
                        ymin = ymax - (xmax - xmin)
                else:
                    if xmin == 0:
                        xmax = xmin + (ymax - ymin)
                    elif xmax == mapx:
                        xmin = xmax - (ymax - ymin)

                ax.set_xlim([xmin, xmax])
                ax.set_ylim([ymin, ymax])

                xwidth = xmax - xmin
                ywidth = ymax - ymin
            except IndexError:
                pass

        positions_x = []
        positions_y = []
        highlights_x = []
        highlights_y = []
        deaths_x = []
        deaths_y = []
        highlights_deaths_x = []
        highlights_deaths_y = []
        care_package_lands_x = []
        care_package_lands_y = []
        care_package_spawns_x = []
        care_package_spawns_y = []

        if color_teams:
            marker_colors = []
            death_marker_colors = []
        else:
            marker_colors = "w"
            death_marker_colors = "r"

        t = 0
        damage_count = 0
        for player, pos in positions.items():
            try:
                player_max = pos[-1][0]
                # This ensures the alive winner(s) stay on the map at the end.
                if frame >= player_max and player not in winner:
                    raise IndexError
                elif frame >= player_max and player not in killed:
                    fidx = frame if interpolate else -1
                else:
                    fidx = frame

                if interpolate:
                    t = max([t, fidx])
                else:
                    t = max([t, pos[fidx][0]])

                for package in package_spawns:
                    if package[0] < t and package[0] > t - 60:
                        care_package_spawns_x.append(package[1])
                        care_package_spawns_y.append(mapy - package[2])
                for package in package_lands:
                    if package[0] < t:
                        care_package_lands_x.append(package[1])
                        care_package_lands_y.append(mapy - package[2])

                # Update player positions
                if interpolate:
                    if fidx >= pos[-1][0] and player in killed:
                        raise IndexError
                    x = interpolate_coords(fidx, pos, 0, 1)
                    y = mapy - interpolate_coords(fidx, pos, 0, 2)
                else:
                    x = pos[fidx][1]
                    y = mapy - pos[fidx][2]

                # Update player highlights
                if player in highlight_players:
                    highlights_x.append(x)
                    highlights_y.append(y)
                else:
                    positions_x.append(x)
                    positions_y.append(y)
                    # Set colors
                    if color_teams:
                        marker_colors.append(team_colors[player])

                # Update labels
                if labels and player in label_players:
                    if disable_labels_after is not None and frame >= disable_labels_after:
                        name_labels[player].set_position((-100000, -100000))
                    else:
                        name_labels[player].set_position(
                            (x + 10000 * xwidth / mapx,
                             y - 10000 * ywidth / mapy))

                # Update player damages
                if damage:
                    try:
                        for attack in damages[player]:
                            damage_frame = int(attack[0])
                            if damage_frame >= fidx + interval:
                                break
                            elif damage_frame >= fidx and damage_frame < fidx + interval:
                                damage_line_x = [attack[1], attack[4]]
                                damage_line_y = [
                                    mapy - attack[2], mapy - attack[5]
                                ]
                                damage_lines[damage_count].set_data(
                                    damage_line_x, damage_line_y)
                                damage_count += 1
                    except KeyError:
                        pass

            except IndexError as exc:
                # Set death markers
                if player in highlight_players:
                    highlights_deaths_x.append(pos[-1][1])
                    highlights_deaths_y.append(mapy - pos[-1][2])
                else:
                    deaths_x.append(pos[-1][1])
                    deaths_y.append(mapy - pos[-1][2])

                    # Set death marker colors
                    if color_teams:
                        death_marker_colors.append(team_colors[player])

                # Draw dead players names
                if labels and dead_player_labels and player in label_players:
                    name_labels[player].set_position(
                        (pos[-1][1] + 10000 * xwidth / mapx,
                         mapy - pos[-1][2] - 10000 * ywidth / mapy))
                    name_labels[player].set_path_effects([
                        patheffects.withStroke(linewidth=1, foreground="gray")
                    ])
                # Offscreen if labels are off
                elif labels and player in label_players:
                    name_labels[player].set_position((-100000, -100000))

        player_offsets = [(x, y) for x, y in zip(positions_x, positions_y)]
        if len(player_offsets) > 0:
            players.set_offsets(player_offsets)
        else:
            players.set_offsets([(-100000, -100000)])

        if color_teams:
            players.set_facecolors(marker_colors)

        death_offsets = [(x, y) for x, y in zip(deaths_x, deaths_y)]
        if len(death_offsets) > 0:
            deaths.set_offsets(death_offsets)
        if color_teams:
            deaths.set_facecolors(death_marker_colors)

        if highlight_players is not None:
            highlight_offsets = [(x, y)
                                 for x, y in zip(highlights_x, highlights_y)]
            if len(highlight_offsets) > 0:
                highlights.set_offsets(highlight_offsets)
            else:
                highlights.set_offsets([(-100000, -100000)])

            highlight_death_offsets = [
                (x, y)
                for x, y in zip(highlights_deaths_x, highlights_deaths_y)
            ]
            if len(highlight_death_offsets) > 0:
                highlights_deaths.set_offsets(highlight_death_offsets)

        if len(care_package_lands_x) > 0:
            care_package_lands.set_data(care_package_lands_x,
                                        care_package_lands_y)

        if len(care_package_spawns_x) > 0:
            care_package_spawns.set_data(care_package_spawns_x,
                                         care_package_spawns_y)

        # Remove the remaining slots
        for k in range(damage_count, damage_slots):
            damage_lines[k].set_data([], [])

        if labels:
            if highlight_players or highlight_teams:
                updates = players, deaths, highlights, highlights_deaths, blue_circle, red_circle, white_circle, *tuple(
                    name_labels.values())
            else:
                updates = players, deaths, blue_circle, red_circle, white_circle, *tuple(
                    name_labels.values())
        else:
            if highlight_players or highlight_teams:
                updates = players, deaths, highlights, highlights_deaths, blue_circle, red_circle, white_circle
            else:
                updates = players, deaths, blue_circle, red_circle, white_circle
        if care_packages:
            updates = *updates, care_package_lands, care_package_spawns
        if damage:
            updates = *updates, *damage_lines
        return updates

    # Create the animation
    animation = FuncAnimation(
        fig,
        update,
        frames=range(0, maxlength + end_frames, interval),
        interval=int(1000 / fps),
        init_func=init,
        blit=True,
    )

    # Write the html5 to buffer
    h5 = animation.to_html5_video()

    # Save to disk
    logging.info("Saving file: {file}".format(file=filename))
    with open(filename, "w") as f:
        f.write(h5)
    logging.info("Saved file.")

    return True
Exemplo n.º 18
0
def render_animation(figures,
                     skeleton,
                     fps,
                     num_frames,
                     output='out.mp4',
                     bitrate=1000,
                     audios=[],
                     start_time=0,
                     figsize=(4, 4),
                     userStudy=0,
                     history=0,
                     history_offset=1,
                     suptitle=''):
    """
    Render or show an animation. The supported output modes are:
    figures:: [[kind, pos, datas, (elev, azim)]]
    kind:: graph, skeleton, highlight
    pos:: (1,2,2)
    datas:: [data1, data2 ...]

     -- 'interactive': display an interactive figure
                       (also works on notebooks if associated with %matplotlib inline)
     -- 'html': render the animation as HTML5 video. Can be displayed in a notebook using HTML(...).
     -- 'filename.mp4': render and export the animation as an h264 video (requires ffmpeg).
     -- 'filename.gif': render and export the animation a gif file (requires imagemagick).
    """
    initialized = [False for _ in figures]
    liness = []
    for figure in figures:
        kind, pos, datas, title, axes_label, view_point = figure
        if kind == 'skeleton':
            liness.append([[[] for _ in range(history + 1)] for _ in datas])
        else:
            liness.append([])

    plt.ioff()
    fig = plt.figure(figsize=figsize)
    if userStudy:
        txt1 = """SCALE:     1    -    2    -    3    -    4    -    5    -    6    -    7
                  Disagree         Somewhat       Somewhat         Agree
                                    Disagree           Agree                 """

        txt2 = """    1. There is enough conversation to comment on the quality of the interactions of Person A.
      2. The motion of person A looks natural and match his/her speech
      3. “Person A” behaves as herself / himself (recall the reference video)
      4. “Person A” reacts realistically to person B (in terms of person B’s speech and motion)'"""
        plt.figtext(0.5, 0.2, txt1, ha='center', fontsize=16)
        plt.figtext(0.25, 0.01, txt2, ha='left', fontsize=16)
        plt.suptitle("Person A is black and red", ha='center', fontsize=16)

    if suptitle:
        plt.suptitle(suptitle, ha='center', fontsize=12)

    def init_func(fig, figures, skeleton, figsize, fps):
        x = 0
        y = 1
        z = 2
        radius = torch.max(skeleton.offsets()).item(
        ) * 10  # Heuristic that works well with many skeletons

        skeleton_parents = skeleton.parents()

        axes = []
        skel_fig_num = 0
        for fig_num, values in enumerate(figures):
            kind, pos, datas, title, axes_label, view_point = values
            elev, azim = view_point

            if kind == 'skeleton':
                ax = fig.add_subplot(pos[0], pos[1], pos[2], projection='3d')
                if title:
                    ax.set_title(title)
                if axes_label:
                    ax.set_xlabel(axes_label[0])
                    ax.set_ylabel(axes_label[1])
                ax.view_init(elev=elev, azim=azim)

                ax.set_xlim3d([-radius / 2, radius / 2])
                ax.set_ylim3d([0, radius])
                ax.set_zlim3d([0, radius])
                #ax.set_aspect('equal')

                ## plot xzplane
                MINS = datas[0].min(axis=0).min(axis=0)
                MAXES = datas[0].max(axis=0).max(axis=0)
                ax = plot_xzPlane(ax, MINS[0], MAXES[0], MINS[2], MAXES[2], 0)

                ax.grid(b=False)
                #ax.grid(b=True, axis='y') ## remove grid lines Hardcoded TODO, can be made a parameter
                plt.axis('off')
                ax.set_xticklabels([])
                ax.set_yticklabels([])
                ax.set_zticklabels([])
                ax.dist = 7.5

                trajectory = sum([data[:, 0, [0, 2]]
                                  for data in datas]) / len(datas)
                avg_segment_length = np.mean(
                    np.linalg.norm(np.diff(trajectory, axis=0), axis=1)) + 1e-3
                draw_offset = int(25 / avg_segment_length)
                spline_line, = ax.plot(*trajectory.T)
                camera_pos = trajectory
                height_offset = np.min(
                    [np.min(data[:, :, 1]) for data in datas])  # Min height

                #data = data.copy()
                for i, data in enumerate(datas):
                    figures[fig_num][2][i][:, :, 1] -= height_offset
                axes.append(ax)
                skel_fig_num = fig_num

                # min_x = np.min([np.min(data[:, :, 0]) for data in datas]) # Min height
                # max_x = np.max([np.max(data[:, :, 0]) for data in datas]) # Min height
                # min_y = np.min([np.min(data[:, :, 1]) for data in datas]) # Min height
                # max_y = np.max([np.max(data[:, :, 1]) for data in datas]) # Min height
                # min_z = np.min([np.min(data[:, :, 2]) for data in datas]) # Min height
                # max_z = np.max([np.max(data[:, :, 2]) for data in datas]) # Min height

                #ax.set_xlim3d([min_x, max_x])
                #ax.set_ylim3d([min_y, max_y])
                #ax.set_zlim3d([min_z, max_z])

            if kind == 'graph':
                ax = fig.add_subplot(pos[0], pos[1], pos[2])
                ax.set_xlim([0, fps])
                ax.set_ylim([np.min(datas), np.max(datas)])
                if title:
                    ax.set_title(title)
                if axes_label:
                    ax.set_xlabel(axes_label[0])
                    ax.set_ylabel(axes_label[1])
                ln = ax.plot([], [], color='red')
                liness[fig_num].append(ln[0])

                axes.append(ax)

            if kind == 'highlight':
                axes.append(axes[skel_fig_num])
                ax = axes[-1]
                ln = ax.plot([], [], [], color='g', ls='', marker='.')
                liness[fig_num].append(ln[0])

        return fig, figures, skeleton, skeleton_parents, radius, camera_pos, trajectory, draw_offset, spline_line, x, y, z, axes

    def update(frame, fig, figures, skeleton, skeleton_parents, radius,
               camera_pos, trajectory, draw_offset, spline_line, x, y, z,
               axes):
        nonlocal initialized
        nonlocal liness
        nonlocal fps
        nonlocal history
        nonlocal history_offset
        nonlocal output

        for fig_num, values in enumerate(
                zip(initialized, figures, axes, liness)):
            Initialized, (kind, pos, datas, title, axes_label,
                          view_point), ax, lines = values
            if kind == 'skeleton':
                #orange and purple respectively['#d95f02', '#7570b3']]
                #color_list = [['red', 'black'], ['orange', 'purple']]
                color_list = [['black', 'red'], ['black', 'purple']]
                #ax = fig.add_subplot(pos[0], pos[1], pos[2], projection='3d')
                ax.set_xlim3d([
                    -radius / 2 + camera_pos[frame, 0],
                    radius / 2 + camera_pos[frame, 0]
                ])
                ax.set_ylim3d([
                    -radius / 2 + camera_pos[frame, 1],
                    radius / 2 + camera_pos[frame, 1]
                ])

                positions_world = [[
                    data[fr]
                    for fr in range(frame, frame - history * history_offset -
                                    1, -history_offset)
                ] for data in datas]
                for i in range(positions_world[0][0].shape[0]):
                    if skeleton_parents[i] == -1:  ## assuming 0 is body_world
                        continue
                    if not Initialized:
                        for count in range(len(datas)):
                            alpha_range = np.arange(1, 0, -1. / (history + 1))
                            for hist, alpha in zip(range(history + 1),
                                                   alpha_range):
                                col = color_list[count][
                                    0] if i in skeleton.joints_right(
                                    ) else color_list[count][
                                        1]  # As in audio cables :)
                                #col = color_list[count][0] if hist == 0 else color_list[count][1]
                                liness[fig_num][count][hist].append(
                                    ax.plot([
                                        positions_world[count][hist][i, x],
                                        positions_world[count][hist][
                                            skeleton_parents[i], x]
                                    ], [
                                        positions_world[count][hist][i, y],
                                        positions_world[count][hist][
                                            skeleton_parents[i], y]
                                    ], [
                                        positions_world[count][hist][i, z],
                                        positions_world[count][hist][
                                            skeleton_parents[i], z]
                                    ],
                                            zdir='y',
                                            c=col,
                                            alpha=alpha,
                                            marker='.'))
                    else:
                        for count in range(len(datas)):
                            for hist in range(history, -1, -1):
                                try:
                                    liness[fig_num][count][hist][
                                        i - 1][0].set_xdata([
                                            positions_world[count][hist][i, x],
                                            positions_world[count][hist][
                                                skeleton_parents[i], x]
                                        ])
                                except:
                                    pdb.set_trace()
                                liness[fig_num][count][hist][
                                    i - 1][0].set_ydata([
                                        positions_world[count][hist][i, y],
                                        positions_world[count][hist][
                                            skeleton_parents[i], y]
                                    ])
                                liness[fig_num][count][hist][
                                    i - 1][0].set_3d_properties([
                                        positions_world[count][hist][i, z],
                                        positions_world[count][hist][
                                            skeleton_parents[i], z]
                                    ],
                                                                zdir='y')

                l = max(frame - draw_offset, 0)
                r = min(frame + draw_offset, trajectory.shape[0])
                spline_line.set_xdata(trajectory[l:r, 0])
                spline_line.set_ydata(np.zeros_like(trajectory[l:r, 0]))
                spline_line.set_3d_properties(trajectory[l:r, 1], zdir='y')
                initialized[fig_num] = True

            if kind == 'graph':
                if frame <= fps / 2:
                    ax.set_xlim([0, fps])
                    liness[fig_num][0].set_data(range(0, frame),
                                                datas[0:frame])
                else:
                    ax.set_xlim([frame - fps / 2, frame + fps / 2])
                    liness[fig_num][0].set_data(
                        range(int(frame - fps / 2), frame),
                        datas[int(frame - fps / 2):frame])

            if kind == 'highlight':
                outputs, mask = datas
                inv_mask = 1 - mask
                ln = liness[fig_num][0]
                non_zero_indices = [
                    idx for idx in range(outputs[0].shape[1])
                    if not mask[frame, idx] == 0
                ]
                ln.set_xdata(outputs[0][frame, non_zero_indices, x])
                ln.set_ydata(outputs[0][frame, non_zero_indices, y])
                ln.set_3d_properties(outputs[0][0, non_zero_indices, z],
                                     zdir='y')

        ## save as images as well
        #filename = '.'.join(Path(output).name.split('.')[:-1])
        #out_folder = '.'.join(output.split('.')[:-1])
        #os.makedirs(out_folder, exist_ok=True)
        #plt.savefig(out_folder + '/{}_{:05d}.png'.format(filename, frame))

    fig.tight_layout()

    anim = FuncAnimation(fig,
                         update,
                         frames=np.arange(history * history_offset,
                                          num_frames),
                         interval=1000 / fps,
                         repeat=False,
                         fargs=init_func(fig, figures, skeleton, figsize, fps))
    if output == 'interactive':
        plt.show()
        return anim
    elif output == 'html':
        return anim.to_html5_video()
    elif output.endswith('.mp4'):
        Writer = writers['ffmpeg']
        writer = Writer(fps=fps, metadata={}, bitrate=bitrate)

        if audios:
            temp_output = output + '_temp.mp4'
            anim.save(temp_output, writer=writer)

            ## add audio to the output
            command_inputs = []
            for audio in reversed(audios):
                command_inputs.append('-ss')
                command_inputs.append('{}'.format(start_time))
                command_inputs.append('-i')
                command_inputs.append('{}'.format(audio))

            command = ['ffmpeg', '-y']
            command += command_inputs
            command.append('-i')
            command.append('{}'.format(temp_output))
            command.append('-filter_complex')
            command.append('[0:a][1:a]amerge=inputs=2[aout]')
            command.append('-map')
            command.append('[aout]')
            command.append('-map')
            command.append('0:a')
            command.append('-map')
            command.append('1:a')
            command.append('-map')
            command.append('2:v')
            command.append('-acodec')
            command.append('ac3')
            command.append('-shortest')
            command.append('{}'.format(output))
            FNULL = open(os.devnull, 'w')
            subprocess.call(command, stderr=FNULL, stdout=FNULL)

            delete_command = ['rm', '{}'.format(temp_output)]
            subprocess.call(delete_command, stderr=FNULL, stdout=FNULL)
        else:
            anim.save(output, writer=writer)

    elif output.endswith('.gif'):
        anim.save(output, dpi=80, writer='imagemagick')
    else:
        raise ValueError(
            'Unsupported output format (only html, .mp4, and .gif are supported)'
        )
    plt.close()
Exemplo n.º 19
0
def visualize(image, **kwargs):
    # Get kwargs
    cmap = kwargs.pop("cmap", "plasma")
    grid = kwargs.pop("grid", True)
    interval = kwargs.pop("interval", 75)
    file = kwargs.pop("file", None)
    html5_video = kwargs.pop("html5_video", True)
    vmin = kwargs.pop("vmin", None)
    vmax = kwargs.pop("vmax", None)
    dpi = kwargs.pop("dpi", None)
    figsize = kwargs.pop("figsize", None)
    bitrate = kwargs.pop("bitrate", None)
    colorbar = kwargs.pop("colorbar", False)
    shrink = kwargs.pop("shrink", 0.01)
    ax = kwargs.pop("ax", None)
    if ax is None:
        custom_ax = False
    else:
        custom_ax = True

    # Animation
    nframes = image.shape[0]
    animated = nframes > 1
    borders = []
    latlines = []
    lonlines = []

    # Set up the plot
    if figsize is None:
        figsize = (7, 3.75)
    if ax is None:
        fig, ax = plt.subplots(1, figsize=figsize)
    else:
        fig = ax.figure

    # Mollweide
    dx = 2.0 / image.shape[1]
    extent = (1 + shrink) * np.array([
        -(1 + dx) * 2 * np.sqrt(2),
        2 * np.sqrt(2),
        -(1 + dx) * np.sqrt(2),
        np.sqrt(2),
    ])
    ax.axis("off")
    ax.set_xlim(-2 * np.sqrt(2) - 0.05, 2 * np.sqrt(2) + 0.05)
    ax.set_ylim(-np.sqrt(2) - 0.05, np.sqrt(2) + 0.05)

    # Anti-aliasing at the edges
    x = np.linspace(-2 * np.sqrt(2), 2 * np.sqrt(2), 10000)
    y = np.sqrt(2) * np.sqrt(1 - (x / (2 * np.sqrt(2)))**2)
    borders += [ax.fill_between(x, 1.1 * y, y, color="w", zorder=-1)]
    borders += [
        ax.fill_betweenx(0.5 * x, 2.2 * y, 2 * y, color="w", zorder=-1)
    ]
    borders += [ax.fill_between(x, -1.1 * y, -y, color="w", zorder=-1)]
    borders += [
        ax.fill_betweenx(0.5 * x, -2.2 * y, -2 * y, color="w", zorder=-1)
    ]

    if grid:
        x = np.linspace(-2 * np.sqrt(2), 2 * np.sqrt(2), 10000)
        a = np.sqrt(2)
        b = 2 * np.sqrt(2)
        y = a * np.sqrt(1 - (x / b)**2)
        borders += ax.plot(x, y, "k-", alpha=1, lw=1.5, zorder=0)
        borders += ax.plot(x, -y, "k-", alpha=1, lw=1.5, zorder=0)
        lats = get_moll_latitude_lines()
        latlines = [None for n in lats]
        for n, l in enumerate(lats):
            (latlines[n], ) = ax.plot(l[0],
                                      l[1],
                                      "k-",
                                      lw=0.5,
                                      alpha=0.5,
                                      zorder=0)
        lons = get_moll_longitude_lines()
        lonlines = [None for n in lons]
        for n, l in enumerate(lons):
            (lonlines[n], ) = ax.plot(l[0],
                                      l[1],
                                      "k-",
                                      lw=0.5,
                                      alpha=0.5,
                                      zorder=0)

    # Plot the first frame of the image
    if vmin is None:
        vmin = np.nanmin(image)
    if vmax is None:
        vmax = np.nanmax(image)
    # Set a minimum contrast
    if np.abs(vmin - vmax) < 1e-12:
        vmin -= 1e-12
        vmax += 1e-12

    img = ax.imshow(
        image[0],
        origin="lower",
        extent=extent,
        cmap=cmap,
        vmin=vmin,
        vmax=vmax,
        interpolation="none",
        animated=animated,
        zorder=-3,
    )

    # Add a colorbar
    if colorbar:
        if not custom_ax:
            fig.subplots_adjust(right=0.85)
        divider = make_axes_locatable(ax)
        cax = divider.append_axes("right", size="5%", pad=0.05)
        fig.colorbar(img, cax=cax, orientation="vertical")

    # Display or save the image / animation
    if animated:

        def updatefig(i):
            img.set_array(image[i])
            return (img, *borders, *latlines, *lonlines)

        ani = FuncAnimation(fig,
                            updatefig,
                            interval=interval,
                            blit=True,
                            frames=image.shape[0])

        # Business as usual
        if (file is not None) and (file != ""):
            if file.endswith(".mp4"):
                ani.save(file, writer="ffmpeg", dpi=dpi, bitrate=bitrate)
            elif file.endswith(".gif"):
                ani.save(file, writer="imagemagick", dpi=dpi, bitrate=bitrate)
            else:
                # Try and see what happens!
                ani.save(file, dpi=dpi, bitrate=bitrate)
            if not custom_ax:
                if not plt.isinteractive():
                    plt.close()
        else:  # if not custom_ax:
            try:
                if "zmqshell" in str(type(get_ipython())):
                    plt.close()
                    with matplotlib.rc_context({
                            "savefig.dpi":
                            dpi if dpi is not None else "figure",
                            "animation.bitrate":
                            bitrate if bitrate is not None else -1,
                    }):
                        if html5_video:
                            display(HTML(ani.to_html5_video()))
                        else:
                            display(HTML(ani.to_jshtml()))
                else:
                    raise NameError("")
            except NameError:
                plt.show()
                if not plt.isinteractive():
                    plt.close()

        # Matplotlib generates an annoying empty
        # file when producing an animation. Delete it.
        try:
            os.remove("None0000000.png")
        except FileNotFoundError:
            pass

    else:
        if (file is not None) and (file != ""):
            fig.savefig(file, bbox_inches="tight")
            if not custom_ax:
                if not plt.isinteractive():
                    plt.close()
        elif not custom_ax:
            plt.show()
Exemplo n.º 20
0
def from_2json_plot(
        json_file1='./json_data/hip/openpose/output.json',
        json_file2='./json_data/Std1-openpose.mp4#-20210131T074012Z-001/Std1-openpose.mp4#',
        save_path='./test_hip.html',
        video='html'):
    '''同上,但画两个图'''
    # TODO: 范围, -y, ect
    _, _, filenames1 = next(os.walk(json_file1))
    filenames1 = [
        os.path.join(json_file1, i) for i in filenames1 if i[-4:] == 'json'
    ]
    pose_list_all1 = []
    for filename in filenames1:
        pose_list = from_path_get_poseList(filename)
        if pose_list is not None:
            pose_list_all1.append(pose_list)

        _, _, filenames2 = next(os.walk(json_file2))
    filenames2 = [
        os.path.join(json_file2, i) for i in filenames2 if i[-4:] == 'json'
    ]
    pose_list_all2 = []
    for filename in filenames2:
        pose_list = from_path_get_poseList(filename)
        if pose_list is not None:
            pose_list_all2.append(pose_list)

    pose_list_all1 = np.array(pose_list_all1)
    pose_list_all2 = np.array(pose_list_all2)
    slices = split(pose_list_all1)
    # 在这里调试中断,查看slices,手动判断选取哪两个index作为分割帧
    slice1_fir = slices[0]
    slice1_end = slices[-1]
    slice2 = split(pose_list_all2)
    slice2_fir = slices[0]
    slice2_end = slices[-1]
    # 抽出动图可以看出,确实都是两个俯卧撑周期,而且时间帧数完全一样,效果较好,但openpose结果抖动太大
    pose_list_all1 = pose_list_all1[slice1_fir:slice1_end]
    pose_list_all2 = pose_list_all2[slice2_fir:slice2_end]
    fig = plt.figure(figsize=(15, 12))
    ax = fig.add_subplot(111,
                         autoscale_on=False,
                         xlim=(0, 2000),
                         ylim=(0, 1000))

    def animate(i):
        global Body_25_Pairs
        global colors
        ax.cla()
        ax.set_xlim(0, 2000)
        ax.set_ylim(0, 1000)
        pose_list1 = pose_list_all1[i]
        pose_list2 = pose_list_all2[i]
        # 每一帧的所有pose
        for pose_part in Body_25_Pairs:
            # 每一个关节连接点
            pose_list = pose_list1
            x1, y1 = pose_list[pose_part[0] * 3], pose_list[pose_part[0] * 3 +
                                                            1]
            x2, y2 = pose_list[pose_part[1] * 3], pose_list[pose_part[1] * 3 +
                                                            1]
            if (x1 and x2 and y1 and y2):
                ax.plot([x1, x2], [y1, y2], 'o-', lw=2,
                        color='red')  # color=colors[pose_part[0]])
        for pose_part in Body_25_Pairs:
            pose_list = pose_list2
            x1, y1 = pose_list[pose_part[0] * 3], pose_list[pose_part[0] * 3 +
                                                            1]
            x2, y2 = pose_list[pose_part[1] * 3], pose_list[pose_part[1] * 3 +
                                                            1]
            if (x1 and x2 and y1 and y2):
                ax.plot([x1, x2], [y1, y2], 'o-', lw=2,
                        color='blue')  # colors[pose_part[0]])

    frame_num = min(len(pose_list_all1), len(pose_list_all2))
    ani = FuncAnimation(fig, animate, frames=range(frame_num), interval=250)
    if video != 'html':
        print('Begin saving gif')
        ani.save('test.gif', writer='imagemagick', fps=None)
        print('Finished.')
    else:
        with open(save_path, 'w') as f:
            # f.write('<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>Test</title> </head> <body> ')
            f.write(ani.to_html5_video())
    return ani
Exemplo n.º 21
0
    for j in range(1,xx-2):
        mat_A[j,j+1] = mat_A[j,j+1]/(mat_A[j,j] - mat_A[j,j-1]*mat_A[j-1,j])
        #ai = ai / di - bi*ai-1
    for j in range(1,xx-1):    
        mat_r[j] = (mat_r[j] - mat_A[j,j-1]*mat_r[j-1]) / (mat_A[j,j] - mat_A[j,j-1]*mat_A[j-1,j])
        #ri = (ri - bi*ri-1)/(di - bi*ai-1)     
                                    
    grid2[-2,n] = mat_r[-1]
    #xn = rn
    
    for i in range(1,xx-1):
        grid2[-i-2,n] = mat_r[-i-1] - mat_A[-i-1,-i]*grid2[-i-1,n]
        #xi = ri - ai*xi+1  from n-1 to 1


#%% plot

fig = plt.figure(figsize=(8,6))
ax = plt.axes(xlim=(0, 1), ylim=(0, 1))
line, = ax.plot([], [])

def update(i):
    line.set_data(np.linspace(0, 1, int(1./dx)+1), grid2[:,i])
    plt.title('t= %5.3F' %(i*dt))
    return line,
    
ani = FuncAnimation(fig, update,  frames=200, interval=50)
HTML(ani.to_html5_video())
ani.save('sin_plus_cos.gif', writer='imagemagick')

        
Exemplo n.º 22
0
    ax.set_xlim(-2, 16)
    ax.set_ylim(-0.1, 18)
    lines[0].set_data([],[])
    lines[1].set_data([],[])
    lines[2].set_data([],[])

    return lines

def update(frame):

    tau_data.append(frame)
    xdata = [x2(i, frame) for i in t_range]
    hdata = [h_func(i) for i in t_range]
    ydata.append(np.sum(np.multiply(xdata, hdata)*(t_range[1] - t_range[0])))
    lines[0].set_data(t_range, xdata)
    lines[1].set_data(t_range, hdata)

    lines[2].set_data(tau_data, ydata)

    return lines

ani = FuncAnimation(fig, update, frames=t_range,
                init_func=init, blit=True, interval=200)

lol = ani.to_html5_video()
with open('k.html', 'w') as f:
   f.write(lol)


plt.show()
Exemplo n.º 23
0
class SolutionAnimation:
    def __init__(
        self,
        solutions,
        velocity=False,
        figsize=None,
        interval=10,
        notebook=True,
    ):
        plt.style.use("dark_background")
        self.fig = plt.figure(figsize=figsize)
        if len(solutions) == 1:
            self.plotter = SingleSolutionPlotter(solutions[0],
                                                 self.fig,
                                                 velocity=velocity)
        else:
            self.plotter = SolutionComparePlotter(solutions,
                                                  self.fig,
                                                  velocity=velocity)

        self.interval = interval
        self.paused = False
        self.notebook = notebook

    def init(self):
        return self.plotter.init()

    def update(self, i):
        return self.plotter.update(i)

    def on_click(self, event):
        """Toggle play/pause with space bar. Handy for non-jupyter runs."""
        if event.key != " ":
            return
        if self.paused:
            self.ani.event_source.start()
            self.paused = False
        else:
            self.ani.event_source.stop()
            self.paused = True

    def run(self):
        self.fig.canvas.mpl_connect("key_press_event", self.on_click)
        self.ani = FuncAnimation(
            self.fig,
            self.update,
            frames=len(self.plotter),
            init_func=self.init,
            interval=self.interval,
            repeat=False,
            blit=True,
        )
        if not self.notebook:
            plt.show()
        else:
            plt.close(self.fig)
        mpl.rcParams.update(mpl.rcParamsDefault)
        return self

    def to_html(self):
        return HTML(self.ani.to_html5_video())
Exemplo n.º 24
0
lines = ax.scatter(x, y, marker='o', s=50, c='green', alpha=0.8)

plt.close()


def animate(i):
    lines.set_sizes(np.array(AmpSize1[i:i + 9]) * 5)
    lines.set_color(Color4[i:i + 9])
    ax.set_ylabel(df['Time'][i][:10])
    if i == len(df) - 9:
        sd.play((panner(longsines[0], np.radians(-50)) +
                 panner(longsines[1], np.radians(0)) +
                 panner(longsines[2], np.radians(50)) +
                 panner(longsines[3], np.radians(10)) +
                 panner(longsines[4], np.radians(20)) +
                 panner(longsines[5], np.radians(-20)) +
                 panner(longsines[6], np.radians(-30)) +
                 panner(longsines[7], np.radians(5)) +
                 panner(longsines[8], np.radians(-5))) * 0.25, sr)
    return lines,


animation = FuncAnimation(fig,
                          func=animate,
                          frames=np.arange(27, len(df), 9),
                          interval=(dur / splits) * 1000,
                          blit=False,
                          repeat=False)

HTML(animation.to_html5_video())
Exemplo n.º 25
0
def animate_quadcopter_3d(traj,
                          x_star,
                          t_span,
                          path='quadcopter_animation.gif',
                          html_embed=False):
    '''
    Animate drone and save gif
    Args
        traj: drone trajectory
        x_star: target position
        t_span: time vector corresponding to each trajectory
        path: save path for 
        html_embed: embed mp4 video in the page
    '''

    fig = plt.figure(figsize=(10, 10))
    ax = plt.axes(projection='3d')

    # For visualization
    scale = 1.5
    s = 50
    dxm = scale * 0.16  # arm length (m)
    dym = scale * 0.16  # arm length (m)
    dzm = scale * 0.05  # motor height (m)
    s_drone = scale * 10  # drone body dimension
    lw = scale
    drone_size = [dxm / 2, dym / 2, dzm]
    drone_color = ["royalblue"]

    lim = [0, x_star[2] * 1.2]
    ax.set_xlim3d(lim[0], lim[1])
    ax.set_ylim3d(lim[0], lim[1])
    ax.set_zlim3d(lim[0], lim[1])
    ax.set_xlabel('x[m]')
    ax.set_ylabel('y[m]')
    ax.set_zlabel('z[m]')

    lines1, lines2 = [], []
    l1, = ax.plot([], [], [], lw=2, color='red')
    l2, = ax.plot([], [], [], lw=2, color='green')

    body, = ax.plot([], [], [],
                    marker='o',
                    markersize=s_drone,
                    color='black',
                    markerfacecolor='black')

    initial = traj[0]
    tr = traj

    # Single frame plotting
    def get_frame(i):
        del ax.collections[:]  # remove previous 3D elements
        init = ax.scatter(initial[0],
                          initial[1],
                          initial[2],
                          marker='^',
                          color='blue',
                          label='Initial Position',
                          s=s)
        fin = ax.scatter(x_star[0],
                         x_star[1],
                         x_star[2],
                         marker='*',
                         color='red',
                         label='Target',
                         s=s)  # set linestyle to none
        ax.plot(tr[:i, 0],
                tr[:i, 1],
                tr[:i, 2],
                alpha=0.1,
                linestyle='-.',
                color='tab:blue')
        time = t_span[i]
        pos = tr[i]
        x = pos[0]
        y = pos[1]
        z = pos[2]

        x_from0 = tr[0:i, 0]
        y_from0 = tr[0:i, 1]
        z_from0 = tr[0:i, 2]

        # Trick to reuse the same function
        R = euler_matrix(torch.Tensor([pos[3]]), torch.Tensor([pos[4]]),
                         torch.Tensor([pos[5]])).numpy().squeeze(0)
        motorPoints = np.array([[dxm, -dym, dzm], [0, 0, 0], [dxm, dym, dzm],
                                [-dxm, dym, dzm], [0, 0, 0], [-dxm, -dym, dzm],
                                [-dxm, -dym, -dzm]])
        motorPoints = np.dot(R, np.transpose(motorPoints))
        motorPoints[0, :] += x
        motorPoints[1, :] += y
        motorPoints[2, :] += z

        # Motors
        l1.set_data(motorPoints[0, 0:3], motorPoints[1, 0:3])
        l1.set_3d_properties(motorPoints[2, 0:3])
        l2.set_data(motorPoints[0, 3:6], motorPoints[1, 3:6])
        l2.set_3d_properties(motorPoints[2, 3:6])

        # Body
        pos = ((motorPoints[:, 6] + 2 * motorPoints[:, 1]) / 3)
        body = plot_cube(pos, drone_size, rotation=R, edgecolor="k")
        ax.add_collection3d(body)

        ax.set_title("Quadcopter Trajectory, t = {:.2f} s".format(time))

    # Unused for now
    def anim_callback(i, get_world_frame):
        frame = get_world_frame(i)
        set_frame(frame)

    # Frame setting
    def set_frame(frame):
        # convert 3x6 world_frame matrix into three line_data objects which is 3x2 (row:point index, column:x,y,z)
        lines_data = [frame[:, [0, 2]], frame[:, [1, 3]], frame[:, [4, 5]]]
        ax = plt.gca()
        lines = ax.get_lines()
        for line, line_data in zip(lines[:3], lines_data):
            x, y, z = line_data
            line.set_data(x, y)
            line.set_3d_properties(z)

    an = FuncAnimation(fig,
                       get_frame,
                       init_func=None,
                       frames=len(t_span) - 1,
                       interval=20,
                       blit=False)

    an.save(path, dpi=80, writer='imagemagick', fps=20)

    if html_embed: HTML(an.to_html5_video())
Exemplo n.º 26
0
def generateSimulationFertilized(s_tracker,
                                 z_tracker,
                                 iteration=None,
                                 lcm=f_lcm,
                                 norm=f_norm):
    fig, axes = plt.subplots(1, 2, figsize=(12, 5))
    s_iter = s_tracker.iteration
    z_iter = z_tracker.iteration
    iteration = max(s_iter, z_iter) if (iteration == None) else iteration

    plt.subplots_adjust(wspace=0.3)
    nplots, bplots = ([], [])
    for ax in axes:
        plt.setp(ax, xticks=[], yticks=[])
        nplot, = ax.plot([], [], 'o', color='blue')
        bplot, = ax.plot([], [], 'o', color='red')
        nplots.append(nplot)
        bplots.append(bplot)

    splot = axes[0].imshow(s_tracker.tm_tracks[0],
                           cmap=lcm,
                           norm=norm,
                           vmin=0,
                           vmax=1)
    generateColorbar(axes[0], splot, [0, 1])

    zplot = axes[1].imshow(z_tracker.tm_tracks[0],
                           cmap=lcm,
                           norm=norm,
                           vmin=0,
                           vmax=1)
    generateColorbar(axes[1], zplot, [0, 1])

    def animate(i):
        print("Working on iteration...{}".format(i))
        its = min(i, s_iter)
        itz = min(i, z_iter)
        (sny, snx), (sby, sbx) = s_tracker.getAgentLocations(its)
        nplots[0].set_data(snx, sny)
        bplots[0].set_data(sbx, sby)

        (zny, znx), (zby, zbx) = z_tracker.getAgentLocations(itz)
        nplots[1].set_data(znx, zny)
        bplots[1].set_data(zbx, zby)

        s_srate = (s_tracker.s_tracks[its] / s_tracker.size) * 100
        s_frate = (s_tracker.f_tracks[its] / s_tracker.nt) * 100
        axes[0].set_title(
            ("Iterasi: {}\nSurveillance:{:6.2f}%. Pemupukan: {:6.2f}%").format(
                i, s_srate, s_frate), {'fontsize': 12},
            loc='left')
        z_srate = (z_tracker.s_tracks[itz] / z_tracker.size) * 100
        z_frate = (z_tracker.f_tracks[itz] / z_tracker.nt) * 100
        axes[1].set_title(
            ("Surveillance:{:6.2f}%. Pemupukan: {:6.2f}%").format(
                z_srate, z_frate), {'fontsize': 12},
            loc='left')

        splot = axes[0].imshow(s_tracker.tm_tracks[its],
                               cmap=lcm,
                               norm=norm,
                               vmin=0,
                               vmax=1)
        zplot = axes[1].imshow(z_tracker.tm_tracks[itz],
                               cmap=lcm,
                               norm=norm,
                               vmin=0,
                               vmax=1)
        return splot, zplot

    # Menampilkan Animasi
    frames = np.arange(0, iteration, 1)
    anim = FuncAnimation(fig, animate, frames=frames, interval=100)
    plt.close(anim._fig)
    return HTML(anim.to_html5_video())
Exemplo n.º 27
0
label2 = ax.text(600, 100, 'angle = 0',
                fontsize=12)
 
def animate(i):
  
    _, c = sess.run([optimiser_op, loss],
                    feed_dict={x : np.array(x_input).reshape(-1, 1), y: np.array(y_output).reshape(-1, 1)})
    
    a,f = sess.run([angle_constant.value(), force_constant.value()])
    
    traj_path = traj(np.arange(1000), f, a, 9.8)
    
    label.set_text(traf_equ(int(a), int(f)))
    
    label2.set_text('angle = {}°'.format(int(a)))
  
  
    line.set_ydata(traj_path)
    
anim = FuncAnimation(
    fig, animate, interval=50, frames=130)

HTML(anim.to_html5_video())

sess.run(angle_constant.value())

HTML(anim.to_html5_video())

a,f = sess.run([angle_constant.value(), force_constant.value()])
a,f
Exemplo n.º 28
0
 def animate(self,
             outputType="screen",
             color="random",
             speed=10,
             outDir="out",
             type="line"):
     if not os.path.exists(outDir): os.mkdir(outDir)
     fname = os.path.join(
         outDir, "knightPath-{}-{}".format(self.kn.shape[0],
                                           self.kn.shape[1]))
     knightAnimation = FuncAnimation(self.fig,
                                     self._genLine,
                                     fargs=(speed, color, type),
                                     repeat=False,
                                     frames=range(
                                         -speed,
                                         len(self.kn.history),
                                         speed,
                                     ),
                                     blit=False,
                                     interval=10,
                                     cache_frame_data=False)
     if outputType == "screen":
         plt.show()
     elif outputType == "avi":
         knightAnimation.save(
             fname + ".avi",
             writer=FFMpegFileWriter(fps=1,
                                     bitrate=100000,
                                     extra_args=['-vcodec', 'libx264']),
         )
         print("video file written to", fname + ".avi")
     elif outputType == "mp4":
         knightAnimation.save(
             fname + ".mp4",
             writer=FFMpegFileWriter(fps=1,
                                     bitrate=100000,
                                     extra_args=['-vcodec', 'libx264']),
         )
         print("MP4 video file written to", fname + ".mp4")
     elif outputType == "gif":
         knightPathAnim = FuncAnimation(self.fig,
                                        self._genAllLines,
                                        repeat=False,
                                        frames=range(1),
                                        blit=False,
                                        interval=10,
                                        cache_frame_data=False)
         knightPathAnim.save(fname + '.gif',
                             writer=ImageMagickFileWriter(fps=1))
         print("Image written to", fname + ".gif")
     elif outputType == "animgif":
         knightAnimation.save(fname + '.anim.gif',
                              writer=ImageMagickFileWriter(fps=1))
         print("Animated gif written to", fname + ".anim.gif")
     elif outputType == "html":
         open(fname + ".html", "w").write(
             self._genHtmlFrame(knightAnimation.to_html5_video(50.0)))
         print("HTML file written to", fname + ".html")
     else:
         print("Unknown outputType '" + outputType + "'")
         return
Exemplo n.º 29
0
def animate(map, time, phase0=0.0, res=75, interval=75):
    """

    """
    # Load the SPICE data
    ephemFiles = glob.glob('../data/TESS_EPH_PRE_LONG_2018*.bsp')
    tlsFile = '../data/tess2018338154046-41240_naif0012.tls'
    solarSysFile = '../data/tess2018338154429-41241_de430.bsp'
    #print(spice.tkvrsn('TOOLKIT'))
    for ephFil in ephemFiles:
        spice.furnsh(ephFil)
    spice.furnsh(tlsFile)
    spice.furnsh(solarSysFile)

    # JD time range
    allTJD = time + TJD0
    nT = len(allTJD)
    allET = np.zeros((nT, ), dtype=np.float)
    for i, t in enumerate(allTJD):
        allET[i] = spice.unitim(t, 'JDTDB', 'ET')

    # Calculate positions of TESS, the Earth, and the Sun
    tess = np.zeros((3, len(allET)))
    sun = np.zeros((3, len(allET)))
    for i, et in enumerate(allET):
        outTuple = spice.spkezr('Mgs Simulation', et, 'J2000', 'NONE', 'Earth')
        tess[0, i] = outTuple[0][0] * REARTH
        tess[1, i] = outTuple[0][1] * REARTH
        tess[2, i] = outTuple[0][2] * REARTH
        outTuple = spice.spkezr('Sun', et, 'J2000', 'NONE', 'Earth')
        sun[0, i] = outTuple[0][0] * REARTH
        sun[1, i] = outTuple[0][1] * REARTH
        sun[2, i] = outTuple[0][2] * REARTH

    # Figure setup
    fig = plt.figure(figsize=(8, 8))
    ax = np.zeros((2, 2), dtype=object)
    ax[0, 0] = plt.subplot(221)
    ax[0, 1] = plt.subplot(222)
    ax[1, 0] = plt.subplot(223, sharex=ax[0, 0], sharey=ax[0, 0])
    ax[1, 1] = plt.subplot(224, sharex=ax[0, 0], sharey=ax[0, 0])
    for axis in [ax[0, 0], ax[1, 0], ax[1, 1]]:
        axis.set_aspect(1)
        axis.set_xlim(-65, 65)
        axis.set_ylim(-65, 65)
        for tick in axis.xaxis.get_major_ticks() + axis.yaxis.get_major_ticks(
        ):
            tick.label.set_fontsize(10)
    i = 0

    # Orbit xz
    ax[0, 0].plot(tess[0], tess[2], "k.", ms=1, alpha=0.025)
    txz, = ax[0, 0].plot(tess[0, i], tess[2, i], 'o', color="C0", ms=4)
    norm = 1. / np.sqrt(sun[0, i]**2 + sun[2, i]**2)
    x = sun[0, i] * norm
    y = sun[2, i] * norm
    theta = 180. / np.pi * np.arctan2(y, x)
    dayxz = Wedge((0, 0), 5, theta - 90, theta + 90, color=cmap(0.8))
    nightxz = Wedge((0, 0), 5, theta + 90, theta + 270, color=cmap(0.0))
    ax[0, 0].add_artist(dayxz)
    ax[0, 0].add_artist(nightxz)
    ax[0, 0].set_ylabel("z", fontsize=16)

    # Orbit xy
    ax[1, 0].plot(tess[0], tess[1], "k.", ms=1, alpha=0.025)
    txy, = ax[1, 0].plot(tess[0, i], tess[1, i], 'o', color="C0", ms=4)
    norm = 1. / np.sqrt(sun[0, i]**2 + sun[1, i]**2)
    x = sun[0, i] * norm
    y = sun[1, i] * norm
    theta = 180. / np.pi * np.arctan2(y, x)
    dayxy = Wedge((0, 0), 5, theta - 90, theta + 90, color=cmap(0.8))
    nightxy = Wedge((0, 0), 5, theta + 90, theta + 270, color=cmap(0.0))
    ax[1, 0].add_artist(dayxy)
    ax[1, 0].add_artist(nightxy)
    ax[1, 0].set_xlabel("x", fontsize=16)
    ax[1, 0].set_ylabel("y", fontsize=16)

    # Orbit zy
    ax[1, 1].plot(tess[2], tess[1], "k.", ms=1, alpha=0.025)
    tzy, = ax[1, 1].plot(tess[2, i], tess[1, i], 'o', color="C0", ms=4)
    norm = 1. / np.sqrt(sun[2, i]**2 + sun[1, i]**2)
    x = sun[2, i] * norm
    y = sun[1, i] * norm
    theta = 180. / np.pi * np.arctan2(y, x)
    dayzy = Wedge((0, 0), 5, theta - 90, theta + 90, color=cmap(0.8))
    nightzy = Wedge((0, 0), 5, theta + 90, theta + 270, color=cmap(0.0))
    ax[1, 1].add_artist(dayzy)
    ax[1, 1].add_artist(nightzy)
    ax[1, 1].set_xlabel("z", fontsize=16)

    # Render the image
    t = (time - time[0]) / (time[-1] - time[0])
    t = 2 * (t - 0.5)
    Z = np.empty((len(time), res, res))
    north_pole = np.empty((len(time), 3))
    y = np.array(map[:, :, :])
    for i in tqdm(range(len(time))):
        # Reset the map and rotate it to the correct phase
        # in the mean equatorial (J2000) frame
        map[:, :, :] = y
        '''
        map.axis = [0, 1, 0]
        phase = (360. * time[i]) % 360. + phase0
        map.rotate(phase)
        '''

        # Rotate so that TESS is along the +z axis
        r = np.sqrt(np.sum(tess[:, i]**2))
        costheta = np.dot(tess[:, i], [0, 0, r])
        axis = np.cross(tess[:, i], [0, 0, r])
        sintheta = np.sqrt(np.sum(axis**2))
        axis /= sintheta
        theta = 180. / np.pi * np.arctan2(sintheta, costheta)
        R = starry.RAxisAngle(axis, theta)
        north_pole[i] = np.dot(R, [0, 0, 1])
        source = np.dot(R, sun[:, i])
        source /= np.sqrt(np.sum(source**2, axis=0))
        '''
        map.axis = axis
        map.rotate(theta)
        '''

        # Align the pole of the Earth with the "north" direction
        costheta = np.dot([0, 1, 0], north_pole[i])
        axis = np.cross([0, 1, 0], north_pole[i])
        sintheta = np.sqrt(np.sum(axis**2))
        axis /= sintheta
        theta = 180. / np.pi * np.arctan2(sintheta, costheta)
        map.axis = axis
        map.rotate(theta)

        # Rotate to the correct phase
        map.axis = north_pole[i]
        phase = (360. * time[i]) % 360. + phase0
        map.rotate(phase)

        # Finally, rotate the image so that north always points up
        # This doesn't actually change the integrated flux!
        map.axis = [0, 0, 1]
        theta = 180. / np.pi * np.arctan2(north_pole[i, 0], north_pole[i, 1])
        map.rotate(theta)
        R = starry.RAxisAngle([0, 0, 1], theta)
        north_pole[i] = np.dot(R, north_pole[i])
        source = np.dot(R, source)

        # Render the image
        Z[i] = map.render(t=t[i], source=source, res=res)[0]

    # Reset the map
    map[:, :, :] = y
    map.axis = [0, 1, 0]

    # Image
    vmin = 0.0
    vmax = np.nanmax(Z)
    cmap.set_under(cmap(vmin))
    image = ax[0, 1].imshow(Z[0],
                            extent=(-1, 1, -1, 1),
                            origin="lower",
                            cmap=cmap,
                            vmin=vmin,
                            vmax=vmax)
    npl, = ax[0, 1].plot(north_pole[0, 0],
                         north_pole[0, 1],
                         marker=r"$N$",
                         color="r")
    spl, = ax[0, 1].plot(-north_pole[0, 0],
                         -north_pole[0, 1],
                         marker=r"$S$",
                         color="b")
    if north_pole[0, 2] > 0:
        npl.set_visible(True)
        spl.set_visible(False)
    else:
        npl.set_visible(False)
        spl.set_visible(True)
    ax[0, 1].axis("off")
    ax[0, 1].set_xlim(-1.1, 1.1)
    ax[0, 1].set_ylim(-1.1, 1.1)

    # Function to animate each frame
    def update(i):
        # Update orbit
        txz.set_xdata(tess[0, i])
        txz.set_ydata(tess[2, i])
        norm = 1. / np.sqrt(sun[0, i]**2 + sun[2, i]**2)
        x = sun[0, i] * norm
        y = sun[2, i] * norm
        theta = 180. / np.pi * np.arctan2(y, x)
        dayxz.set_theta1(theta - 90)
        dayxz.set_theta2(theta + 90)
        nightxz.set_theta1(theta + 90)
        nightxz.set_theta2(theta + 270)
        txy.set_xdata(tess[0, i])
        txy.set_ydata(tess[1, i])
        norm = 1. / np.sqrt(sun[0, i]**2 + sun[1, i]**2)
        x = sun[0, i] * norm
        y = sun[1, i] * norm
        theta = 180. / np.pi * np.arctan2(y, x)
        dayxy.set_theta1(theta - 90)
        dayxy.set_theta2(theta + 90)
        nightxy.set_theta1(theta + 90)
        nightxy.set_theta2(theta + 270)
        tzy.set_xdata(tess[2, i])
        tzy.set_ydata(tess[1, i])
        norm = 1. / np.sqrt(sun[2, i]**2 + sun[1, i]**2)
        x = sun[2, i] * norm
        y = sun[1, i] * norm
        theta = 180. / np.pi * np.arctan2(y, x)
        dayzy.set_theta1(theta - 90)
        dayzy.set_theta2(theta + 90)
        nightzy.set_theta1(theta + 90)
        nightzy.set_theta2(theta + 270)
        image.set_data(Z[i])
        npl.set_xdata(north_pole[i, 0])
        npl.set_ydata(north_pole[i, 1])
        spl.set_xdata(-north_pole[i, 0])
        spl.set_ydata(-north_pole[i, 1])
        if north_pole[i, 2] > 0:
            npl.set_visible(True)
            spl.set_visible(False)
        else:
            npl.set_visible(False)
            spl.set_visible(True)
        return txz, dayxz, nightxz, txy, dayxy, nightxy, \
               tzy, dayzy, nightzy, image, npl, spl

    # Generate the animation
    ani = FuncAnimation(fig,
                        update,
                        frames=len(time),
                        interval=interval,
                        blit=False)

    try:
        if 'zmqshell' in str(type(get_ipython())):
            plt.close()
            display(HTML(ani.to_html5_video()))
        else:
            raise NameError("")
    except NameError:
        plt.show()
        plt.close()

    return np.nansum(Z, axis=(1, 2))
Exemplo n.º 30
0
    def animate(self):
        df = self.slice_data()
        dates = df.columns
        merged = self.us_map.set_index('NAME').join(df)
        fig, ax = plt.subplots(figsize=(15, 7))

        def draw_frame(frame_num, dates=dates, fig=fig, ax=ax):
            ax.clear()
            if len(fig.axes) > 1:
                fig.delaxes(fig.axes[1])
            date = dates[frame_num]
            bins = merged[date].quantile([0, 0.1, 0.25, 0.5, 0.75, 0.9, 1])
            vmin, vmax = merged[date].min(), merged[date].max()
            med = merged[date].median()
            merged.plot(column=date,
                        cmap='Reds',
                        linewidth=0.8,
                        ax=ax,
                        edgecolor='0.8',
                        classification_kwds={'bins': bins})
            ax.set_xlim([-125, -65])
            ax.set_ylim([25, 50])
            ax.axis('off')
            ax.set_title('# of Confirmed Cases of Covid-19',
                         fontdict={
                             'fontsize': '18',
                             'fontweight': '3'
                         })
            ax.annotate(date,
                        xy=(0.1, .225),
                        xycoords='figure fraction',
                        ha='left',
                        va='top',
                        fontsize=16)
            ax.annotate(f'Median: {med}',
                        xy=(0.1, .175),
                        xycoords='figure fraction',
                        ha='left',
                        va='top',
                        fontsize=16)
            ax.annotate(f'Max: {vmax}',
                        xy=(0.1, .125),
                        xycoords='figure fraction',
                        ha='left',
                        va='top',
                        fontsize=16)
            sm = plt.cm.ScalarMappable(cmap='Reds',
                                       norm=plt.Normalize(vmin=vmin,
                                                          vmax=vmax))
            divider = make_axes_locatable(ax)
            cax = divider.append_axes("right", size="5%", pad=0.05)
            cbar = fig.colorbar(sm, cax=cax)
            fig.tight_layout()

        writervideo = animation.FFMpegWriter(fps=60)
        anim = FuncAnimation(fig,
                             draw_frame,
                             frames=len(dates),
                             interval=400,
                             repeat=False)
        anim.save('pages/animation.mp4', writer=writervideo)
        html = anim.to_html5_video()
        plt.close(fig)
        return HTML(html)