Exemplo n.º 1
0
def plt_brom_ersem_wod(save=False):
    dss = xr.open_dataset(brom_path)
    #levels = sorted(dss.depth.values)
    levels = sorted(dss.z.values)
    fig = plt.figure(figsize=(7, 5.5), dpi=100)
    '''
    Data from World Ocean Database 
    https://www.nodc.noaa.gov/OC5/WOD/datageo.html 
    '''
    ncfile = (wod_path)
    vars = ['Oxygen', 'po4', 'si', 'no3']
    titles = ['O$_2', 'PO$_4', 'Si $', 'NO$_3']

    axes = []
    cols = 2
    gs = gridspec.GridSpec(len(vars) // cols, cols)
    gs.update(hspace=0.3, wspace=0.3, top=0.92, bottom=0.02, right=0.97)

    x_text, y_text = -0.05, 1.1
    labels = ('A) ', 'B) ', 'C) ', 'D) ')
    interps = [1, 3, 10, 3]  #levels of interpolation
    for n in range(0, 4):
        row = (n // cols)
        col = n % cols
        axes.append(fig.add_subplot(gs[row, col]))
        add_brom_plot(dss, axes[n], vars[n])
        add_amk(axes[n], vars[n])
        plot_data_wod(ncfile,
                      vars[n],
                      True,
                      True,
                      levels,
                      axes[n],
                      interps[n],
                      double_int=True,
                      only_clima_mean=True)
        axes[n].set_ylim(90, 0)
        axes[n].xaxis.set_ticks_position('top')
        axes[n].set_ylabel('depth, m')
        axes[n].set_title(r'{}\ \mu M$'.format(titles[n]), y=1.1)
        axes[n].text(x_text,
                     y_text,
                     labels[n],
                     transform=axes[n].transAxes,
                     fontsize=14,
                     fontweight='bold',
                     va='top',
                     ha='right')
    if save == True:
        #plt.savefig('Fig/Figure6_WOD_vs_BROM.pdf',
        #            format =  'pdf',
        #            transparent = False)
        plt.savefig('Fig/Figure6_WOD_vs_BROM.png',
                    format='png',
                    transparent=False)
    else:
        plt.show()
Exemplo n.º 2
0
def plot_roms_average_year(var,title,cmap = 'gist',vmax = None,vmin = None) :
    ds = xr.open_dataset('Data\ROMS_Laptev_Sea_NETCDF3_CLASSIC_east_var2.nc')
    ds = ds.where((ds['time.year']  >= 1989), drop=True)     
    d = ds.depth.values
    
    ds_1990 = ds.where((ds['time.year'] < 1992), drop=True) 
    ds_2002= ds.where((ds['time.year'] >= 2002), drop=True)
    arr = ds[var].to_pandas().sort_index() 
    arr = arr.resample('D').ffill()  
    t = arr.index.dayofyear   
    arr['dayofyear'] = t    
    
    arr = arr.pivot_table(arr,index = 'dayofyear', aggfunc=np.median).T.sort_index() #columns = 'depth', 
    X,Y = np.meshgrid(arr.columns,arr.index)
  
    fig  = plt.figure(figsize=(8,9), dpi=100 )
    fig.suptitle(title)
    gs = gridspec.GridSpec(3,1)
    gs.update(hspace=0.35,top = 0.95,bottom = 0.05, right = 1.05,left = 0.1) 
    ax = fig.add_subplot(gs[0]) 
    ax1 = fig.add_subplot(gs[1])
    ax2 = fig.add_subplot(gs[2])   
    ax2.set_title('Average year') 
       
    ds_1990[var].plot(ax=ax, x = 'time',y = 'depth',cmap=plt.get_cmap(cmap),vmax = vmax,vmin = vmin)
    ds_2002[var].plot(ax=ax1, x = 'time',y = 'depth',cmap=plt.get_cmap(cmap),vmax = vmax,vmin = vmin)  
    cs = ax2.pcolormesh(X,Y,arr,cmap=plt.get_cmap(cmap),vmax = vmax,vmin = vmin) 
    
    plt.colorbar(cs, ax = ax2)    

    for axis in (ax,ax1,ax2):
        axis.set_ylabel('depth, m')
        axis.set_ylim(80,0)
    start = datetime.datetime(1989, 1, 1, 23, 59)
    end = datetime.datetime(2014, 1, 1, 23, 59)
    rng = pd.date_range(start, end, freq='A-DEC')
    ax.vlines(rng,0,80,linestyle = '--', lw = 0.5)
    ax1.vlines(rng,0,80,linestyle = '--', lw = 0.5)
    ax2.set_xlabel('number of day in a year')
    #plt.savefig(r'C:\Users\elp\OneDrive\Python_workspace\arctic2030\Data\mean_roms_{}.png'.format(var))
    plt.show() 
    plt.clf()
Exemplo n.º 3
0
sub_second = int(round((start_time - int(start_time)) * 100))
timestamp = "%d-%02d-%02d %02d:%02d:%02d.%02d UT" % (
    srt_time[0], srt_time[1], srt_time[2], srt_time[3], srt_time[4],
    srt_time[5], sub_second)

# add and modify aspects of plot post-plotting
f.suptitle('%s %s %4.2f MHz' % (title, timestamp, cfreq / 1E6), fontsize=10)

ax.set_xlabel('time (UTC)', fontsize=8)

tl = ax.get_xticklabels()
for tk in tl:
    tk.set_size(8)
del tl
tl = ax.get_yticklabels()
for tk in tl:
    tk.set_size(8)
del tl

gridspec.update()

f.tight_layout()

f.subplots_adjust(top=0.95, right=0.88)
cax = f.add_axes([0.9, 0.12, 0.02, 0.80])
f.colorbar(im, cax=cax)

# save and show plot
matplotlib.pyplot.savefig(dir_plot)
#matplotlib.pyplot.show()
Exemplo n.º 4
0
from make_movie_strip import process_fp
from make_movie_strip import process_phase
from make_movie_strip import add_no_over
import figure_util
import data.bio_film_data.strainmap as strainmaper

plt.style.use('../figstyle.mpl')

figall = plt.figure()
#gs = gs.GridSpec(2, 3, width_ratios=[0.4, 0.25, 0.25])
#plt.subplots_adjust(left=0.1, right=0.9, top=0.9, bottom=0.1 )

gs = gs.GridSpec(2, 4, height_ratios=[0.7, 0.3])
#gs.update(left=0.05, right=0.95, wspace=0.15, hspace=0.00)
gs.update(left=0.06, right=0.98, wspace=0.15, hspace=0.05)

aximgr = plt.subplot(gs[0, 0:2])
aximgr.grid(False)
aximgr.axis('off')
aximgy = plt.subplot(gs[0, 2:4])
aximgy.grid(False)
aximgy.axis('off')
axall = [plt.subplot(gs[1, i]) for i in range(4)]

yticks = mticker.MaxNLocator(nbins=4)

## Images
"""
path = "movie_strip/sigB_biofilmpad6-O001_3-{0}-{1:03d}.tif"
image_num = 31
Exemplo n.º 5
0
    print("Loading data...")
    x_test, _, _, _ = load_data(env['test_data_file'])

    print("Initializing VIN...")
    VIN = create_VIN(
        env['input_image_shape'],
        n_hidden_filters=150,
        n_state_filters=10,
        k=env['k'],
    )
    print("Loading pre-trained VIN parameterss...")
    storage.load(VIN, env['pretrained_network_file'])

    plt.figure(figsize=(8, 8))
    gridspec = gridspec.GridSpec(5, 4, height_ratios=[0, 2, 2, 2, 2])
    gridspec.update(wspace=0.1, hspace=0.1)

    plt.suptitle('Trajectories between two points predicted by VIN ')

    plt.subplot(gridspec[0, :])
    plt.legend(
        handles=[
            mpatches.Patch(color='#A71C1B', label='Start'),
            mpatches.Patch(color='#F35D47', label='Trajectory'),
            mpatches.Patch(color='#007035', label='Goal'),
        ],
        loc=3,
        ncol=3,
        mode="expand",
        borderaxespad=0.,
        bbox_to_anchor=(0., 1.02, 1., .102),
Exemplo n.º 6
0
def for_2d_interpolation(ncfile, varname, file, max_depth, kxy=1):

    fig = plt.figure(figsize=(6, 9), dpi=100)
    gs = gridspec.GridSpec(3, 1)
    gs.update(left=0.07,
              right=0.99,
              hspace=0.4,
              wspace=0.05,
              bottom=0.05,
              top=0.95)
    axis = fig.add_subplot(gs[0])
    axis2 = fig.add_subplot(gs[1])
    axis3 = fig.add_subplot(gs[2])
    #axis4 = fig.add_subplot(gs[3])

    ds = xr.open_dataset(ncfile)
    df = ds.to_dataframe()

    df = df[[
        'date_time', 'var1', 'var2', 'var3', 'var4', 'var5', 'var6', 'var7',
        'var9', 'var10', 'var12'
    ]]
    df.columns = [
        'date_time', 'var1', 'temp', 'sal', 'Oxygen', 'po4', 'si', 'no3', 'pH',
        'chl', 'alk'
    ]

    cmap = plt.get_cmap('rainbow')  # get colormap

    # Write name of variable to the text file with statistics
    file.write('\n{}'.format(varname))

    # Data cleaning! Different for each case
    df['no3'] = df['no3'][df['no3'] < 17]
    df['po4'] = df['po4'][df['po4'] < 2.5]
    df['Oxygen'] = df['Oxygen'] * 44.6
    df['alk'] = df['alk'] * 1000
    df['Oxygen'] = df['Oxygen'][df['Oxygen'] > 200]
    df = df[df.date_time.dt.year > 1950]
    df['Date_of_year'] = df.date_time.dt.dayofyear.values

    # crate the 1d array with numbers of days  in a year
    day_of_year = (np.array(df.date_time.dt.dayofyear.values)).flatten()
    #day = (np.array(df.date_time.dt.date.values)).flatten()
    depth2 = (np.array(df['var1'])).flatten()
    var2 = (np.array(df[varname])).flatten()

    # specify steps for interpolations for different vars
    steps = {
        'Oxygen': 1,
        'si': 0.1,
        'alk': 1,
        'chl': 0.01,
        'po4': 0.5,
        'no3': 0.1,
        'pH': 0.01
    }
    step = steps[varname]

    #Remove nans
    depth2_nan = depth2[~np.isnan(depth2)]
    var2_nan = var2[~np.isnan(depth2)]
    day_of_year_nan = day_of_year[~np.isnan(depth2)]

    depth2_nan = depth2_nan[~np.isnan(var2_nan)]
    var2_nan2 = var2_nan[~np.isnan(var2_nan)]
    day_of_year_nan = day_of_year_nan[~np.isnan(var2_nan)]

    vmax = np.nanmax(var2_nan2)
    vmin = np.nanmin(var2_nan2)
    file.write('\nMax over the whole period = {}'.format(vmax))
    file.write('\nMin over the whole period = {}'.format(vmin))

    # Create grid for linear 2d interpolation
    gridsize = 1
    xi = np.arange(0, 366, gridsize)
    if varname == 'chl':
        yi = np.arange(0, max_depth, gridsize)
    else:
        yi = np.arange(0, max_depth, gridsize)
    z_griddata = griddata((day_of_year_nan, depth2_nan),
                          var2_nan2, (xi[None, :], yi[:, None]),
                          method='linear')

    #Create 2d arrays with new x,y for plotting
    X, Y = np.meshgrid(xi, yi)

    # Interpolation 1 way
    ##f_int2d = interpolate.interp2d(day_of_year_nan,depth2_nan,var2_nan2)
    ###zi_int2d = np.transpose(f_int2d(xi,yi))
    # Interpolate with bivariate spline. kxy = level of int. 1 linear, 3 cubic
    f_biv_spline = interpolate.SmoothBivariateSpline(day_of_year_nan,
                                                     depth2_nan,
                                                     var2_nan2,
                                                     kx=kxy,
                                                     ky=kxy)
    z_biv_spline = np.transpose(f_biv_spline(xi, yi))

    levels = np.arange(vmin, vmax - 1, step)

    axis.set_title('Long-term variability, raw data')
    for tick in axis.get_xticklabels():
        tick.set_rotation(45)

    CS = axis.scatter(df.date_time.dt.date.values,
                      depth2,
                      c=var2,
                      alpha=1,
                      cmap=cmap,
                      s=5)

    axis2.set_title('Seasonal variability, raw data')
    CS2 = axis2.scatter(day_of_year_nan,
                        depth2_nan,
                        c=var2_nan2,
                        alpha=1,
                        cmap=cmap,
                        s=5,
                        vmin=vmin,
                        vmax=vmax)

    axis3.set_title('Seasonal variability, griddata')
    CS3 = axis3.scatter(X, Y, c=z_griddata, alpha=1, s=2,
                        cmap=cmap)  #,vmin = vmin, vmax = vmax)
    #CS3 = axis3.contourf(xi, yi,z_griddata,levels = levels ,cmap = cmap,vmin = vmin, vmax = vmax)

    # Different options to plot interpolated data

    #axis4.set_title('Seasonal variability, SmoothBivariateSpline')
    #CS4 = axis4.contourf(xi,yi,z_biv_spline, cmap= cmap) #,vmin = vmin,vmax = vmax)
    #CS4 = axis4.pcolormesh(xi,yi,z_griddata, cmap= cmap) #,vmin = vmin,vmax = vmax)

    if varname == 'pH':
        fig.suptitle(r'{}'.format(varname), y=0.995, size=14)
    else:
        fig.suptitle(r'{} $\mu M$'.format(varname), y=0.995, size=14)

    plt.colorbar(CS2, ax=axis2)
    plt.colorbar(CS, ax=axis)
    plt.colorbar(CS3, ax=axis3)
    #plt.colorbar(CS4, ax=axis4)

    for axis in (axis, axis2, axis3):  #,axis4):
        axis.set_ylim(max_depth, 0)

    for axis in (axis2, axis3):  #,axis4):
        axis.set_xlim(0, 365)
        axis.set_xlabel('Day in a year')

    fig.savefig('data/smeaheia_wod_2d_3{}.png'.format(varname))
    #plt.show()
    plt.clf()
Exemplo n.º 7
0
            print "Received ->", recv_msg
            break
        return recv_msg



if __name__ == "__main__":

    UDPServer = UDPServer()
    #recv_msg = UDPServer.tcpServer()
    #print "main recv_msg", recv_msg
    recv_msg = "2"

    plt.figure(num=None, figsize=(8, 6), dpi=100, facecolor='w', edgecolor='k')
    gs = gs.GridSpec(1, 1)
    gs.update(left=0.05, right=0.98, hspace=0.3)

    leftArm = plt.subplot(gs[:-1, -1])
    leftArm.axis('scaled')
    plt.xticks(np.arange(0,80,20))
    plt.xlim(0,80)
    plt.ylim(-80,80)
    leftArm.set_title('leftArm')

    larm = arm.arm_class(leftArm)
    plt.ion()
    plt.show()

    if recv_msg == "2":
        print "2"
        larm.arm_angle()