Exemplo n.º 1
0
#ax.grid(True, which='both', axis='both')
ax.axhline(y=0, color='k')
ax.axvline(x=0, color='k')

# Axes labels and limiters
ax.set_xlabel('Ex')
ax.set_ylabel('Ey')
ax.set_ylim(min(Ey), max(Ey))
ax.set_xlim(min(Ex), max(Ex))
ax.set_aspect('equal', adjustable='box')

# Plot red-dotted outline
plt.plot(Ex, Ey, 'r:')

# Animate arrows
patch = patches.Arrow(0, 0, Ex[0], Ey[0], width=0.5)


def init():
    ax.add_patch(patch)
    return patch,


def animate(t):
    ax.patches.pop()
    patch = plt.Arrow(0, 0, Ex[t], Ey[t], width=0.5)
    ax.add_patch(patch)

    return patch,

Exemplo n.º 2
0
def HybridAStarPlan(visualize_flag):
    # initialze object
    HybridAStar = HybridAStarPlanner()

    # parameter(except max, min and car size is defined in proto)
    num_output_buffer = 100000
    sx = -8
    sy = 4
    sphi = 0.0

    scenario = "backward"
    # scenario = "parallel"

    if scenario == "backward":
        # for parking space 11543 in sunnyvale_with_two_offices
        left_boundary_x = (c_double *
                           3)(*[-13.6407054776, 0.0, 0.0515703622475])
        left_boundary_y = (c_double *
                           3)(*[0.0140634663703, 0.0, -5.15258191624])
        down_boundary_x = (c_double * 2)(*[0.0515703622475, 2.8237895441])
        down_boundary_y = (c_double * 2)(*[-5.15258191624, -5.15306980547])
        right_boundary_x = (c_double *
                            3)(*[2.8237895441, 2.7184833539, 16.3592013995])
        right_boundary_y = (c_double * 3)(
            *[-5.15306980547, -0.0398078878812, -0.011889513383])
        up_boundary_x = (c_double * 2)(*[16.3591910364, -13.6406951857])
        up_boundary_y = (c_double * 2)(*[5.60414234644, 5.61797800844])
        # obstacles(x, y, size)
        HybridAStar.AddVirtualObstacle(left_boundary_x, left_boundary_y, 3)
        HybridAStar.AddVirtualObstacle(down_boundary_x, down_boundary_y, 2)
        HybridAStar.AddVirtualObstacle(right_boundary_x, right_boundary_y, 3)
        HybridAStar.AddVirtualObstacle(up_boundary_x, up_boundary_y, 2)
        ex = 1.359
        ey = -3.86443643718
        ephi = 1.581
        XYbounds = [
            -13.6406951857, 16.3591910364, -5.15258191624, 5.61797800844
        ]

    x = (c_double * num_output_buffer)()
    y = (c_double * num_output_buffer)()
    phi = (c_double * num_output_buffer)()
    v = (c_double * num_output_buffer)()
    a = (c_double * num_output_buffer)()
    steer = (c_double * num_output_buffer)()
    size = (c_ushort * 1)()
    XYbounds_ctype = (c_double * 4)(*XYbounds)

    start = time.time()
    print("planning start")
    success = True
    if not HybridAStar.Plan(sx, sy, sphi, ex, ey, ephi, XYbounds_ctype):
        print("planning fail")
        success = False
    end = time.time()
    planning_time = end - start
    print("planning time is " + str(planning_time))

    # load result
    x_out = []
    y_out = []
    phi_out = []
    v_out = []
    a_out = []
    steer_out = []

    if visualize_flag and success:
        HybridAStar.GetResult(x, y, phi, v, a, steer, size)
        for i in range(0, size[0]):
            x_out.append(float(x[i]))
            y_out.append(float(y[i]))
            phi_out.append(float(phi[i]))
            v_out.append(float(v[i]))
            a_out.append(float(a[i]))
            steer_out.append(float(steer[i]))

        # plot
        fig1 = plt.figure(1)
        ax = fig1.add_subplot(111)
        for i in range(0, size[0]):
            downx = 1.055 * math.cos(phi_out[i] - math.pi / 2)
            downy = 1.055 * math.sin(phi_out[i] - math.pi / 2)
            leftx = 1.043 * math.cos(phi_out[i] - math.pi)
            lefty = 1.043 * math.sin(phi_out[i] - math.pi)
            x_shift_leftbottom = x_out[i] + downx + leftx
            y_shift_leftbottom = y_out[i] + downy + lefty
            car = patches.Rectangle((x_shift_leftbottom, y_shift_leftbottom),
                                    3.89 + 1.043,
                                    1.055 * 2,
                                    angle=phi_out[i] * 180 / math.pi,
                                    linewidth=1,
                                    edgecolor='r',
                                    facecolor='none')
            arrow = patches.Arrow(x_out[i], y_out[i],
                                  0.25 * math.cos(phi_out[i]),
                                  0.25 * math.sin(phi_out[i]), 0.2)
            ax.add_patch(car)
            ax.add_patch(arrow)
        ax.plot(sx, sy, "s")
        ax.plot(ex, ey, "s")
        if scenario == "backward":
            left_boundary_x = [-13.6407054776, 0.0, 0.0515703622475]
            left_boundary_y = [0.0140634663703, 0.0, -5.15258191624]
            down_boundary_x = [0.0515703622475, 2.8237895441]
            down_boundary_y = [-5.15258191624, -5.15306980547]
            right_boundary_x = [2.8237895441, 2.7184833539, 16.3592013995]
            right_boundary_y = [
                -5.15306980547, -0.0398078878812, -0.011889513383
            ]
            up_boundary_x = [16.3591910364, -13.6406951857]
            up_boundary_y = [5.60414234644, 5.61797800844]
            ax.plot(left_boundary_x, left_boundary_y, "k")
            ax.plot(down_boundary_x, down_boundary_y, "k")
            ax.plot(right_boundary_x, right_boundary_y, "k")
            ax.plot(up_boundary_x, up_boundary_y, "k")

        plt.axis('equal')

        fig2 = plt.figure(2)
        v_graph = fig2.add_subplot(311)
        v_graph.title.set_text('v')
        v_graph.plot(np.linspace(0, size[0], size[0]), v_out)
        a_graph = fig2.add_subplot(312)
        a_graph.title.set_text('a')
        a_graph.plot(np.linspace(0, size[0], size[0]), a_out)
        steer_graph = fig2.add_subplot(313)
        steer_graph.title.set_text('steering')
        steer_graph.plot(np.linspace(0, size[0], size[0]), steer_out)
        plt.show()
    if not visualize_flag:
        if success:
            HybridAStar.GetResult(x, y, phi, v, a, steer, size)
            for i in range(0, size[0]):
                x_out.append(float(x[i]))
                y_out.append(float(y[i]))
                phi_out.append(float(phi[i]))
                v_out.append(float(v[i]))
                a_out.append(float(a[i]))
                steer_out.append(float(steer[i]))
        return success, x_out, y_out, phi_out, v_out, a_out, steer_out, planning_time
Exemplo n.º 3
0
def SmoothTrajectory(visualize_flag, sx, sy):
    # initialze object
    OpenSpacePlanner = DistancePlanner()

    # parameter(except max, min and car size is defined in proto)
    num_output_buffer = 10000
    # sx = -8
    # sy = 1.5
    # sphi = 0.5
    sphi = 0.0

    scenario = "backward"
    # scenario = "parallel"

    if scenario == "backward":
        # obstacles for distance approach(vertices coords in clock wise order)
        ROI_distance_approach_parking_boundary = (c_double * 20)(*[
            -13.6407054776,
            0.0140634663703,
            0.0,
            0.0,
            0.0515703622475,
            -5.15258191624,
            0.0515703622475,
            -5.15258191624,
            2.8237895441,
            -5.15306980547,
            2.8237895441,
            -5.15306980547,
            2.7184833539,
            -0.0398078878812,
            16.3592013995,
            -0.011889513383,
            16.3591910364,
            5.60414234644,
            -13.6406951857,
            5.61797800844,
        ])
        OpenSpacePlanner.AddObstacle(ROI_distance_approach_parking_boundary)
        # parking lot position
        ex = 1.359
        ey = -3.86443643718
        ephi = 1.581
        XYbounds = [
            -13.6406951857, 16.3591910364, -5.15258191624, 5.61797800844
        ]

    x = (c_double * num_output_buffer)()
    y = (c_double * num_output_buffer)()
    phi = (c_double * num_output_buffer)()
    v = (c_double * num_output_buffer)()
    a = (c_double * num_output_buffer)()
    steer = (c_double * num_output_buffer)()
    opt_x = (c_double * num_output_buffer)()
    opt_y = (c_double * num_output_buffer)()
    opt_phi = (c_double * num_output_buffer)()
    opt_v = (c_double * num_output_buffer)()
    opt_a = (c_double * num_output_buffer)()
    opt_steer = (c_double * num_output_buffer)()
    opt_time = (c_double * num_output_buffer)()
    opt_dual_l = (c_double * num_output_buffer)()
    opt_dual_n = (c_double * num_output_buffer)()
    size = (c_ushort * 1)()
    XYbounds_ctype = (c_double * 4)(*XYbounds)
    hybrid_time = (c_double * 1)(0.0)
    dual_time = (c_double * 1)(0.0)
    ipopt_time = (c_double * 1)(0.0)

    success = True
    start = time.time()
    print("planning start")
    if not OpenSpacePlanner.DistancePlan(sx, sy, sphi, ex, ey, ephi,
                                         XYbounds_ctype):
        print("planning fail")
        success = False
    #   exit()
    planning_time = time.time() - start
    print("planning time is " + str(planning_time))

    x_out = []
    y_out = []
    phi_out = []
    v_out = []
    a_out = []
    steer_out = []
    opt_x_out = []
    opt_y_out = []
    opt_phi_out = []
    opt_v_out = []
    opt_a_out = []
    opt_steer_out = []
    opt_time_out = []
    opt_dual_l_out = []
    opt_dual_n_out = []

    if visualize_flag and success:
        # load result
        OpenSpacePlanner.DistanceGetResult(x, y, phi, v, a, steer, opt_x,
                                           opt_y, opt_phi, opt_v, opt_a,
                                           opt_steer, opt_time, opt_dual_l,
                                           opt_dual_n, size, hybrid_time,
                                           dual_time, ipopt_time)
        for i in range(0, size[0]):
            x_out.append(float(x[i]))
            y_out.append(float(y[i]))
            phi_out.append(float(phi[i]))
            v_out.append(float(v[i]))
            a_out.append(float(a[i]))
            steer_out.append(float(steer[i]))
            opt_x_out.append(float(opt_x[i]))
            opt_y_out.append(float(opt_y[i]))
            opt_phi_out.append(float(opt_phi[i]))
            opt_v_out.append(float(opt_v[i]))
            opt_a_out.append(float(opt_a[i]))
            opt_steer_out.append(float(opt_steer[i]))
            opt_time_out.append(float(opt_time[i]))

        for i in range(0, size[0] * 6):
            opt_dual_l_out.append(float(opt_dual_l[i]))
        for i in range(0, size[0] * 16):
            opt_dual_n_out.append(float(opt_dual_n[i]))
        # trajectories plot
        fig1 = plt.figure(1)
        ax = fig1.add_subplot(111)
        for i in range(0, size[0]):
            # warm start
            downx = 1.055 * math.cos(phi_out[i] - math.pi / 2)
            downy = 1.055 * math.sin(phi_out[i] - math.pi / 2)
            leftx = 1.043 * math.cos(phi_out[i] - math.pi)
            lefty = 1.043 * math.sin(phi_out[i] - math.pi)
            x_shift_leftbottom = x_out[i] + downx + leftx
            y_shift_leftbottom = y_out[i] + downy + lefty
            warm_start_car = patches.Rectangle(
                (x_shift_leftbottom, y_shift_leftbottom),
                3.89 + 1.043,
                1.055 * 2,
                angle=phi_out[i] * 180 / math.pi,
                linewidth=1,
                edgecolor='r',
                facecolor='none')
            warm_start_arrow = patches.Arrow(
                x_out[i],
                y_out[i],
                0.25 * math.cos(phi_out[i]),
                0.25 * math.sin(phi_out[i]),
                0.2,
                edgecolor='r',
            )
            # ax.add_patch(warm_start_car)
            ax.add_patch(warm_start_arrow)
            # distance approach
            downx = 1.055 * math.cos(opt_phi_out[i] - math.pi / 2)
            downy = 1.055 * math.sin(opt_phi_out[i] - math.pi / 2)
            leftx = 1.043 * math.cos(opt_phi_out[i] - math.pi)
            lefty = 1.043 * math.sin(opt_phi_out[i] - math.pi)
            x_shift_leftbottom = opt_x_out[i] + downx + leftx
            y_shift_leftbottom = opt_y_out[i] + downy + lefty
            smoothing_car = patches.Rectangle(
                (x_shift_leftbottom, y_shift_leftbottom),
                3.89 + 1.043,
                1.055 * 2,
                angle=opt_phi_out[i] * 180 / math.pi,
                linewidth=1,
                edgecolor='y',
                facecolor='none')
            smoothing_arrow = patches.Arrow(
                opt_x_out[i],
                opt_y_out[i],
                0.25 * math.cos(opt_phi_out[i]),
                0.25 * math.sin(opt_phi_out[i]),
                0.2,
                edgecolor='y',
            )
            ax.add_patch(smoothing_car)
            ax.add_patch(smoothing_arrow)

        ax.plot(sx, sy, "s")
        ax.plot(ex, ey, "s")
        if scenario == "backward":
            left_boundary_x = [-13.6407054776, 0.0, 0.0515703622475]
            left_boundary_y = [0.0140634663703, 0.0, -5.15258191624]
            down_boundary_x = [0.0515703622475, 2.8237895441]
            down_boundary_y = [-5.15258191624, -5.15306980547]
            right_boundary_x = [2.8237895441, 2.7184833539, 16.3592013995]
            right_boundary_y = [
                -5.15306980547, -0.0398078878812, -0.011889513383
            ]
            up_boundary_x = [16.3591910364, -13.6406951857]
            up_boundary_y = [5.60414234644, 5.61797800844]
            ax.plot(left_boundary_x, left_boundary_y, "k")
            ax.plot(down_boundary_x, down_boundary_y, "k")
            ax.plot(right_boundary_x, right_boundary_y, "k")
            ax.plot(up_boundary_x, up_boundary_y, "k")

        plt.axis('equal')

        # input plot
        fig2 = plt.figure(2)
        v_graph = fig2.add_subplot(411)
        v_graph.title.set_text('v')
        v_graph.plot(np.linspace(0, size[0], size[0]), v_out)
        v_graph.plot(np.linspace(0, size[0], size[0]), opt_v_out)
        a_graph = fig2.add_subplot(412)
        a_graph.title.set_text('a')
        a_graph.plot(np.linspace(0, size[0], size[0]), a_out)
        a_graph.plot(np.linspace(0, size[0], size[0]), opt_a_out)
        steer_graph = fig2.add_subplot(413)
        steer_graph.title.set_text('steering')
        steer_graph.plot(np.linspace(0, size[0], size[0]), steer_out)
        steer_graph.plot(np.linspace(0, size[0], size[0]), opt_steer_out)
        steer_graph = fig2.add_subplot(414)
        steer_graph.title.set_text('t')
        steer_graph.plot(np.linspace(0, size[0], size[0]), opt_time_out)
        # dual variables
        fig3 = plt.figure(3)
        dual_l_graph = fig3.add_subplot(211)
        dual_l_graph.title.set_text('dual_l')
        dual_l_graph.plot(np.linspace(0, size[0] * 6, size[0] * 6),
                          opt_dual_l_out)
        dual_n_graph = fig3.add_subplot(212)
        dual_n_graph.title.set_text('dual_n')
        dual_n_graph.plot(np.linspace(0, size[0] * 16, size[0] * 16),
                          opt_dual_n_out)
        plt.show()
        return True

    if not visualize_flag:
        if success:
            # load result
            OpenSpacePlanner.DistanceGetResult(x, y, phi, v, a, steer, opt_x,
                                               opt_y, opt_phi, opt_v, opt_a,
                                               opt_steer, opt_time, opt_dual_l,
                                               opt_dual_n, size, hybrid_time,
                                               dual_time, ipopt_time)
            for i in range(0, size[0]):
                x_out.append(float(x[i]))
                y_out.append(float(y[i]))
                phi_out.append(float(phi[i]))
                v_out.append(float(v[i]))
                a_out.append(float(a[i]))
                steer_out.append(float(steer[i]))
                opt_x_out.append(float(opt_x[i]))
                opt_y_out.append(float(opt_y[i]))
                opt_phi_out.append(float(opt_phi[i]))
                opt_v_out.append(float(opt_v[i]))
                opt_a_out.append(float(opt_a[i]))
                opt_steer_out.append(float(opt_steer[i]))
                opt_time_out.append(float(opt_time[i]))
            # check end_pose distacne
            end_pose_dist = math.sqrt((opt_x_out[-1] - ex)**2 +
                                      (opt_y_out[-1] - ey)**2)
            end_pose_heading = abs(opt_phi_out[-1] - ephi)
            reach_end_pose = (end_pose_dist <= 0.1
                              and end_pose_heading <= 0.17)
        else:
            end_pose_dist = 100.0
            end_pose_heading = 100.0
            reach_end_pose = 0
        return [
            success, end_pose_dist, end_pose_heading, reach_end_pose,
            opt_x_out, opt_y_out, opt_phi_out, opt_v_out, opt_a_out,
            opt_steer_out, opt_time_out, hybrid_time, dual_time, ipopt_time,
            planning_time
        ]
    return False
Exemplo n.º 4
0
label(grid[2], "Wedge")

# add a Polygon
polygon = mpatches.RegularPolygon(grid[3], 5, 0.1)
patches.append(polygon)
label(grid[3], "Polygon")

#add an ellipse
ellipse = mpatches.Ellipse(grid[4], 0.2, 0.1)
patches.append(ellipse)
label(grid[4], "Ellipse")

#add an arrow
arrow = mpatches.Arrow(grid[5, 0] - 0.05,
                       grid[5, 1] - 0.05,
                       0.1,
                       0.1,
                       width=0.1)
patches.append(arrow)
label(grid[5], "Arrow")

# add a path patch
Path = mpath.Path
path_data = [(Path.MOVETO, [0.018, -0.11]), (Path.CURVE4, [-0.031, -0.051]),
             (Path.CURVE4, [-0.115, 0.073]), (Path.CURVE4, [-0.03, 0.073]),
             (Path.LINETO, [-0.011, 0.039]), (Path.CURVE4, [0.043, 0.121]),
             (Path.CURVE4, [0.075, -0.005]), (Path.CURVE4, [0.035, -0.027]),
             (Path.CLOSEPOLY, [0.018, -0.11])]
codes, verts = zip(*path_data)
path = mpath.Path(verts + grid[6], codes)
patch = mpatches.PathPatch(path)
Exemplo n.º 5
0
	def plotStresses(self,plotCir,plotVel,plotCon,plotF,plotStress,**kwargs):
		if 'figure' in kwargs:
			fig=plt.figure(figsize=(20,20))
                        #fig=plt.figure()
			axval= fig.add_subplot(1, 1, 1)
		elif 'axis' in kwargs:
			axval=kwargs['axis']
                else:
                        fig=plt.figure()
			axval= fig.add_subplot(1, 1, 1)
		if 'timestamp' in kwargs:
			axval.text(0.0,0.4*self.Ly,'T= ' +str(kwargs['timestamp']),fontsize=18)
		for k in range(self.N):
			# Particle circles
			if (plotCir):
				cir1=ptch.Circle((self.conf.x[k],self.conf.y[k]),radius=self.conf.rad[k],ec=(0.5, 0.5, 0.5),fc='none', linewidth=2)
				axval.add_patch(cir1)
				#angline=lne.Line2D([self.x[k],self.x[k]+self.rad[k]*np.cos(self.alpha[k])],[self.y[k],self.y[k]+self.rad[k]*np.sin(self.alpha[k])],color=(0.5, 0.5, 0.5))
				#plt.gca().add_line(angline)
				if self.verbose:
					axval.text(self.conf.x[k],self.conf.y[k],str(k),fontsize=8)
			# Velocity vectors
			if (plotVel):
				scale=2*np.mean(self.conf.rad)/np.sqrt(np.mean(self.conf.dx*self.conf.dx)+np.mean(self.conf.dy*self.conf.dy))
				velvect=ptch.Arrow(self.conf.x[k],self.conf.y[k],scale*self.conf.dx[k],scale*self.conf.dy[k],width=0.3,color='b')
				axval.add_patch(velvect)
				
		# Plotting contacts
		if (plotCon):
			for k in range(len(self.conf.I)):
				x0,x1,y0,y1=self.conf.getConPos(k)
				if (self.fullmobi[k]==1):
					conlink=lne.Line2D([x0,x1],[y0,y1],color=(0.7,0,0),lw=3.0)
					axval.add_line(conlink)
				else:
					conlink=lne.Line2D([x0,x1],[y0,y1],color=(0,0,0),lw=3.0)
					axval.add_line(conlink)
				if self.verbose:
					if (k>=self.ncon):
						axval.text(x0+0.5*(x1-x0)-self.small*np.sin(ang),y0+0.5*(y1-y0)+self.small*np.cos(ang),str(k),fontsize=8)
					else:
						axval.text(x0+0.5*(x1-x0),y0+0.5*(y1-y0),str(k),fontsize=8)
						
		if (plotF):
			#fscale=np.mean(self.fnor)
			fscale=self.fgiven
			Fcolor,Fmap=self.color_init(np.sqrt(np.amax(self.conf.fnor))/fscale)
			for k in range(len(self.conf.I)):
				fval=np.sqrt(self.conf.fnor[k]/fscale)
				x0,x1,y0,y1=self.conf.getConPos(k)
				conlink=lne.Line2D([x0,x1],[y0,y1],color=Fcolor(fval),lw=2*fval)
				axval.add_line(conlink)
#				if self.verbose:
#					if (k>=self.ncon):
#						axval.text(x0+0.5*(x1-x0)-self.small*np.sin(ang),y0+0.5*(y1-y0)+self.small*np.cos(ang),str(k),fontsize=8)
#					else:
#						axval.text(x0+0.5*(x1-x0),y0+0.5*(y1-y0),str(k),fontsize=8)
						
		if (plotStress):
			print("Plot Stress is still under construction.")
		plt.title('Forces and contacts')				
		axval.axis('scaled')
		if self.conf.datatype=='simulation':
                        axval.set_xlim(-self.Lx/2,self.Lx/2)
                        axval.set_ylim(-self.Ly/2,self.Ly/2)
                elif self.conf.datatype=='experiment':
                        xmin=np.amin(self.conf.x)-20
                        ymin=np.amin(self.conf.y)-20
                        axval.set_xlim(xmin,xmin+self.Lx+120)
                        axval.set_ylim(ymin,ymin+self.Ly+120)
		# returning figure pointer for use outside (like plotting or saving)
		if 'figure' in kwargs:
			return fig
		elif 'axis' in kwargs:
			return axval
                else:
                        return fig
Exemplo n.º 6
0
def draw_shm(shm, iteration=None):
    """

    :param shm: System Health Map
    :return:
    """
    print("===========================================")
    print("GENERATING SYSTEM HEALTH MAP DRAWING...")

    x_size = float(Config.ag.x_size)
    y_size = float(Config.ag.y_size)
    z_size = float(Config.ag.z_size)

    fig = plt.figure(figsize=(10 * x_size, 10 * y_size))
    if z_size == 1:
        plt.ylim([0, 1])
        plt.xlim([0, 1])
    else:
        plt.ylim([0, z_size])
        plt.xlim([0, z_size])

    for node in shm.nodes():
        location = AG_Functions.return_node_location(node)
        x = (location[0] / x_size) * z_size
        y = (location[1] / y_size) * z_size
        z = (location[2] / z_size)
        x_offset = z
        y_offset = z

        font_size = 35 / z_size
        plt.text(x + 0.155 + x_offset,
                 y + 0.055 + y_offset,
                 str(node),
                 fontsize=font_size)
        circle_router = plt.Circle((x + 0.1 + x_offset, y + 0.1 + y_offset),
                                   0.05,
                                   facecolor='w')
        plt.gca().add_patch(circle_router)
        if shm.node[node]['NodeHealth']:
            color = 'w'
        else:
            color = 'r'
        circle_node = plt.Circle((x + 0.14 + x_offset, y + 0.06 + y_offset),
                                 0.01,
                                 facecolor=color)
        plt.gca().add_patch(circle_node)

        for turn in shm.node[node]['TurnsHealth']:
            if shm.node[node]['TurnsHealth'][turn]:
                color = 'black'
            else:
                color = 'r'

            if turn == 'S2E':
                plt.gca().add_patch(
                    patches.Arrow(x + 0.11 + x_offset,
                                  y + 0.065 + y_offset,
                                  0.015,
                                  0.015,
                                  width=0.01,
                                  color=color))
            elif turn == 'E2S':
                plt.gca().add_patch(
                    patches.Arrow(x + 0.135 + x_offset,
                                  y + 0.08 + y_offset,
                                  -0.015,
                                  -0.015,
                                  width=0.01,
                                  color=color))
            elif turn == 'W2N':
                plt.gca().add_patch(
                    patches.Arrow(x + 0.065 + x_offset,
                                  y + 0.117 + y_offset,
                                  0.015,
                                  0.015,
                                  width=0.01,
                                  color=color))
            elif turn == 'N2W':
                plt.gca().add_patch(
                    patches.Arrow(x + 0.09 + x_offset,
                                  y + 0.132 + y_offset,
                                  -0.015,
                                  -0.015,
                                  width=0.01,
                                  color=color))
            elif turn == 'N2E':
                plt.gca().add_patch(
                    patches.Arrow(x + 0.12 + x_offset,
                                  y + 0.132 + y_offset,
                                  0.015,
                                  -0.015,
                                  width=0.01,
                                  color=color))
            elif turn == 'E2N':
                plt.gca().add_patch(
                    patches.Arrow(x + 0.125 + x_offset,
                                  y + 0.117 + y_offset,
                                  -0.015,
                                  0.015,
                                  width=0.01,
                                  color=color))
            elif turn == 'W2S':
                plt.gca().add_patch(
                    patches.Arrow(x + 0.075 + x_offset,
                                  y + 0.08 + y_offset,
                                  0.015,
                                  -0.015,
                                  width=0.01,
                                  color=color))
            elif turn == 'S2W':
                plt.gca().add_patch(
                    patches.Arrow(x + 0.080 + x_offset,
                                  y + 0.065 + y_offset,
                                  -0.015,
                                  0.015,
                                  width=0.01,
                                  color=color))

            if shm.node[node]['TurnsHealth'][turn]:
                color = 'black'
            else:
                color = 'r'

            if turn == 'N2U':
                circle_node = plt.Circle(
                    (x + 0.09 + x_offset, y + 0.142 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)

            elif turn == 'N2D':
                circle_node = plt.Circle(
                    (x + 0.11 + x_offset, y + 0.142 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                circle_node = plt.Circle(
                    (x + 0.11 + x_offset, y + 0.142 + y_offset),
                    0.001,
                    facecolor='b')
                plt.gca().add_patch(circle_node)

            elif turn == 'S2U':
                circle_node = plt.Circle(
                    (x + 0.11 + x_offset, y + 0.057 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)

            elif turn == 'S2D':
                circle_node = plt.Circle(
                    (x + 0.09 + x_offset, y + 0.057 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                circle_node = plt.Circle(
                    (x + 0.09 + x_offset, y + 0.057 + y_offset),
                    0.001,
                    facecolor='b')
                plt.gca().add_patch(circle_node)

            elif turn == 'E2U':
                circle_node = plt.Circle(
                    (x + 0.142 + x_offset, y + 0.11 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)

            elif turn == 'E2D':
                circle_node = plt.Circle(
                    (x + 0.142 + x_offset, y + 0.09 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                circle_node = plt.Circle(
                    (x + 0.142 + x_offset, y + 0.09 + y_offset),
                    0.001,
                    facecolor='b')
                plt.gca().add_patch(circle_node)

            elif turn == 'W2U':
                circle_node = plt.Circle(
                    (x + 0.057 + x_offset, y + 0.09 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)

            elif turn == 'W2D':
                circle_node = plt.Circle(
                    (x + 0.057 + x_offset, y + 0.11 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                circle_node = plt.Circle(
                    (x + 0.057 + x_offset, y + 0.11 + y_offset),
                    0.001,
                    facecolor='b')
                plt.gca().add_patch(circle_node)

            elif turn == 'U2N':
                circle_node = plt.Circle(
                    (x + 0.105 + x_offset, y + 0.111 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                circle_node = plt.Circle(
                    (x + 0.105 + x_offset, y + 0.111 + y_offset),
                    0.001,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                plt.gca().add_patch(
                    patches.Arrow(x + 0.105 + x_offset,
                                  y + 0.116 + y_offset,
                                  0,
                                  0.01,
                                  width=0.01,
                                  color=color))

            elif turn == 'U2S':
                circle_node = plt.Circle(
                    (x + 0.105 + x_offset, y + 0.086 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                circle_node = plt.Circle(
                    (x + 0.105 + x_offset, y + 0.086 + y_offset),
                    0.001,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                plt.gca().add_patch(
                    patches.Arrow(x + 0.105 + x_offset,
                                  y + 0.081 + y_offset,
                                  0,
                                  -0.01,
                                  width=0.01,
                                  color=color))

            elif turn == 'U2W':
                circle_node = plt.Circle(
                    (x + 0.085 + x_offset, y + 0.093 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                circle_node = plt.Circle(
                    (x + 0.085 + x_offset, y + 0.093 + y_offset),
                    0.001,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                plt.gca().add_patch(
                    patches.Arrow(x + 0.08 + x_offset,
                                  y + 0.093 + y_offset,
                                  -0.01,
                                  0,
                                  width=0.01,
                                  color=color))

            elif turn == 'U2E':
                circle_node = plt.Circle(
                    (x + 0.115 + x_offset, y + 0.093 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                circle_node = plt.Circle(
                    (x + 0.115 + x_offset, y + 0.093 + y_offset),
                    0.001,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                plt.gca().add_patch(
                    patches.Arrow(x + 0.12 + x_offset,
                                  y + 0.093 + y_offset,
                                  0.01,
                                  0,
                                  width=0.01,
                                  color=color))

            elif turn == 'D2N':
                circle_node = plt.Circle(
                    (x + 0.095 + x_offset, y + 0.111 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                plt.gca().add_patch(
                    patches.Arrow(x + 0.095 + x_offset,
                                  y + 0.116 + y_offset,
                                  0,
                                  0.01,
                                  width=0.01,
                                  color=color))

            elif turn == 'D2S':
                circle_node = plt.Circle(
                    (x + 0.095 + x_offset, y + 0.086 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                plt.gca().add_patch(
                    patches.Arrow(x + 0.095 + x_offset,
                                  y + 0.081 + y_offset,
                                  0,
                                  -0.01,
                                  width=0.01,
                                  color=color))

            elif turn == 'D2W':
                circle_node = plt.Circle(
                    (x + 0.085 + x_offset, y + 0.104 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                plt.gca().add_patch(
                    patches.Arrow(x + 0.08 + x_offset,
                                  y + 0.104 + y_offset,
                                  -0.01,
                                  0,
                                  width=0.01,
                                  color=color))

            elif turn == 'D2E':
                circle_node = plt.Circle(
                    (x + 0.115 + x_offset, y + 0.104 + y_offset),
                    0.005,
                    edgecolor=color,
                    facecolor='w')
                plt.gca().add_patch(circle_node)
                plt.gca().add_patch(
                    patches.Arrow(x + 0.12 + x_offset,
                                  y + 0.104 + y_offset,
                                  0.01,
                                  0,
                                  width=0.01,
                                  color=color))

    for link in shm.edges():
        if shm.edges[link]['LinkHealth']:
            color = 'black'
        else:
            color = 'r'
        source_loc = AG_Functions.return_node_location(link[0])
        destination_loc = AG_Functions.return_node_location(link[1])

        x = (source_loc[0] / x_size) * z_size
        y = (source_loc[1] / y_size) * z_size
        z = source_loc[2] / z_size
        x_offset = z
        y_offset = z

        dx = ((destination_loc[0] - source_loc[0]) / x_size)
        dy = ((destination_loc[1] - source_loc[1]) / y_size)
        dz = ((destination_loc[2] - source_loc[2]) / z_size)
        if dz == 0:
            if dx == 0:
                if dy > 0:
                    plt.gca().add_patch(
                        patches.Arrow(x + 0.11 + x_offset,
                                      y + 0.15 + y_offset,
                                      0,
                                      dy * z_size - 0.1,
                                      width=0.01,
                                      color=color))
                else:
                    plt.gca().add_patch(
                        patches.Arrow(x + 0.09 + x_offset,
                                      y + 0.05 + y_offset,
                                      0,
                                      dy * z_size + 0.1,
                                      width=0.01,
                                      color=color))

            elif dy == 0:
                if dx > 0:
                    plt.gca().add_patch(
                        patches.Arrow(x + 0.15 + x_offset,
                                      y + 0.11 + y_offset,
                                      dx * z_size - 0.1,
                                      0,
                                      width=0.01,
                                      color=color))
                else:
                    plt.gca().add_patch(
                        patches.Arrow(x + 0.05 + x_offset,
                                      y + 0.09 + y_offset,
                                      dx * z_size + 0.1,
                                      0,
                                      width=0.01,
                                      color=color))
            else:
                raise ValueError("Can not draw link", link)
        elif dz > 0:
            z_offset = 1.4 / z_size
            plt.gca().add_patch(
                patches.Arrow(x + 0.130 + x_offset,
                              y + 0.140 + y_offset,
                              dz * z_offset,
                              dz * z_offset,
                              width=0.01,
                              color=color))
        elif dz < 0:
            plt.gca().add_patch(
                patches.Arrow(x + 0.07 + x_offset,
                              y + 0.06 + y_offset,
                              dz * z_offset,
                              dz * z_offset,
                              width=0.01,
                              color=color))

    fig.text(0.25, 0.02, "System Health Map", fontsize=35)
    if iteration is None:
        plt.savefig("GraphDrawings/SHM.png", dpi=200)
    else:
        plt.savefig("GraphDrawings/SHM_" + str(iteration) + ".png", dpi=200)
    plt.clf()
    plt.close(fig)
    print(
        "\033[35m* VIZ::\033[0mSYSTEM HEALTH MAP DRAWING CREATED AT: GraphDrawings/SHM.png"
    )
    return None
Exemplo n.º 7
0
arrow = mpatches.FancyArrowPatch((x_tail, y_tail), (dx, dy),
                                 mutation_scale=100,
                                 transform=axs[1].transAxes)
axs[1].add_patch(arrow)
axs[1].set_xlim(0, 2)
axs[1].set_ylim(0, 2)

###############################################################################
# Head shape and anchor points fixed in data space
# ------------------------------------------------
#
# In this case we use `.patches.Arrow`
#
# Note that when the axis limits are changed, the arrow shape and location
# changes.

fig, axs = plt.subplots(nrows=2)

arrow = mpatches.Arrow(x_tail, y_tail, dx, dy)
axs[0].add_patch(arrow)

arrow = mpatches.Arrow(x_tail, y_tail, dx, dy)
axs[1].add_patch(arrow)
axs[1].set_xlim(0, 2)
axs[1].set_ylim(0, 2)

###############################################################################

plt.show()
Exemplo n.º 8
0
    def _goal_vec(self):
        data = self.obs[self.obs_index_dict['goal_vec']]

        self.goal_vec_arrow_handle.remove()
        self.goal_vec_arrow = patches.Arrow(x=0, y=0, dx=data[0], dy=data[1])
        self.goal_vec_arrow_handle = self.ax_dict['goal_vec'].add_artist(self.goal_vec_arrow)
def draw_networkx_edges_with_arrows(G,
                                    pos,
                                    width,
                                    edge_color,
                                    plt,
                                    alpha=0.5,
                                    ax=None):
    ec = colorConverter.to_rgba(edge_color, alpha)

    if ax is None:
        ax = plt.gca()

    edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in G.edges()])
    edge_collection = LineCollection(edge_pos,
                                     colors=ec,
                                     linewidths=width,
                                     antialiaseds=(1, ),
                                     linestyle='solid',
                                     transOffset=ax.transData)

    edge_collection.set_zorder(1)
    ax.add_collection(edge_collection)
    edge_collection.set_alpha(alpha)

    p = .8  # length of edge apart from the arrow part

    for (src, dst), lwi in zip(edge_pos, width):
        x1, y1 = src
        x2, y2 = dst
        dx = x2 - x1  # x offset
        dy = y2 - y1  # y offset

        d = np.sqrt(float(dx**2 + dy**2))  # length of edge

        if d == 0:
            continue

        if dx == 0:  # vertical edge
            xa = x2
            ya = dy * p + y1
        if dy == 0:  # horizontal edge
            ya = y2
            xa = dx * p + x1
        else:
            theta = np.arctan2(dy, dx)
            xa = p * d * np.cos(theta) + x1
            ya = p * d * np.sin(theta) + y1
        dx, dy = x2 - xa, y2 - ya
        patch = mpatches.Arrow(xa,
                               ya,
                               dx,
                               dy,
                               width=lwi / 55,
                               alpha=lwi * alpha / 5,
                               color=ec,
                               transform=ax.transData)
        ax.add_patch(patch)

    minx = np.amin(np.ravel(edge_pos[:, :, 0]))
    maxx = np.amax(np.ravel(edge_pos[:, :, 0]))
    miny = np.amin(np.ravel(edge_pos[:, :, 1]))
    maxy = np.amax(np.ravel(edge_pos[:, :, 1]))

    w = maxx - minx
    h = maxy - miny

    padx, pady = 0.05 * w, 0.05 * h
    corners = (minx - padx, miny - pady), (maxx + padx, maxy + pady)

    ax.update_datalim(corners)
    ax.autoscale_view()

    return edge_collection
def artist_reference():
    import matplotlib.path as mpath
    import matplotlib.lines as mlines
    import matplotlib.patches as mpatches
    from matplotlib.collections import PatchCollection

    def label(xy, text):
        y = xy[
            1] - 0.15  # shift y-value for label so that it's below the artist
        plt.text(xy[0], y, text, ha="center", family='sans-serif',
                 size=14)  # ha = horizontalalignment

    fig, ax = plt.subplots()
    grid = np.mgrid[0.2:0.8:0.3, 0.2:0.8:0.3].reshape(2, -1).T
    patches = []
    # add a circle
    circle = mpatches.Circle(grid[0], 0.1, ec="none")
    patches.append(circle)
    label(grid[0], "Circle")
    # add a rectangle
    rect = mpatches.Rectangle(grid[1] - [0.025, 0.05], 0.05, 0.1, ec="none")
    patches.append(rect)
    label(grid[1], "Rectangle")
    # add a wedge
    wedge = mpatches.Wedge(grid[2], 0.1, 30, 270, ec="none")
    patches.append(wedge)
    label(grid[2], "Wedge")
    # add a Polygon
    polygon = mpatches.RegularPolygon(grid[3], 5, 0.1)
    patches.append(polygon)
    label(grid[3], "Polygon")
    # add an ellipse
    ellipse = mpatches.Ellipse(grid[4], 0.2, 0.1)
    patches.append(ellipse)
    label(grid[4], "Ellipse")
    # add an arrow
    arrow = mpatches.Arrow(grid[5, 0] - 0.05,
                           grid[5, 1] - 0.05,
                           0.1,
                           0.1,
                           width=0.1)
    patches.append(arrow)
    label(grid[5], "Arrow")
    # add a path patch
    Path = mpath.Path
    path_data = [(Path.MOVETO, [0.018, -0.11]), (Path.CURVE4, [-0.031,
                                                               -0.051]),
                 (Path.CURVE4, [-0.115, 0.073]), (Path.CURVE4, [-0.03, 0.073]),
                 (Path.LINETO, [-0.011, 0.039]), (Path.CURVE4, [0.043, 0.121]),
                 (Path.CURVE4, [0.075, -0.005]), (Path.CURVE4, [0.035,
                                                                -0.027]),
                 (Path.CLOSEPOLY, [0.018, -0.11])]
    codes, verts = zip(*path_data)
    path = mpath.Path(verts + grid[6], codes)
    patch = mpatches.PathPatch(path)
    patches.append(patch)
    label(grid[6], "PathPatch")
    # add a fancy box
    fancybox = mpatches.FancyBboxPatch(grid[7] - [0.025, 0.05],
                                       0.05,
                                       0.1,
                                       boxstyle=mpatches.BoxStyle("Round",
                                                                  pad=0.02))
    patches.append(fancybox)
    label(grid[7], "FancyBboxPatch")
    # add a line
    x, y = np.array([[-0.06, 0.0, 0.1], [0.05, -0.05, 0.05]])
    line = mlines.Line2D(x + grid[8, 0], y + grid[8, 1], lw=5., alpha=0.3)
    label(grid[8], "Line2D")
    colors = np.linspace(0, 1, len(patches))
    collection = PatchCollection(patches, cmap=plt.cm.hsv, alpha=0.3)
    collection.set_array(np.array(colors))
    ax.add_collection(collection)
    ax.add_line(line)
    plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
    plt.axis('equal')
    plt.axis('off')
    plt.show()
    pass
Exemplo n.º 11
0
random_state = np.random.RandomState(0)
clf = RandomForestClassifier(random_state=random_state)
cv = StratifiedKFold(n_splits=5, shuffle=False)

# * ROC is receiver operationg characteristic. In this curve x axis is false positive rate and y axis is true positive rate
# * If the curve in plot is closer to left-top corner, test is more accurate.
# * Roc curve score is auc that is computation area under the curve from prediction scores
# * We want auc to closer 1

# In[5]:

# plot arrows
fig1 = plt.figure(figsize=[12, 12])
ax1 = fig1.add_subplot(111, aspect='equal')
ax1.add_patch(
    patches.Arrow(0.45, 0.5, -0.25, 0.25, width=0.3, color='green', alpha=0.5))
ax1.add_patch(
    patches.Arrow(0.5, 0.45, 0.25, -0.25, width=0.3, color='red', alpha=0.5))

tprs = []
aucs = []
mean_fpr = np.linspace(0, 1, 100)
i = 1
for train, test in cv.split(x, y):
    prediction = clf.fit(x.iloc[train], y.iloc[train]).predict(x.iloc[test])
    fpr, tpr, t = roc_curve(y[test], prediction)
    tprs.append(interp(mean_fpr, fpr, tpr))
    roc_auc = auc(fpr, tpr)
    aucs.append(roc_auc)
    plt.plot(fpr,
             tpr,