Exemplo n.º 1
0
 def __init__(self, vertices, color):
     self.vertices = vertices
     self.color = color
     self.edges = [
         Edge(*e, figure=self)
         for e in zip(vertices,
                      list(vertices[1:]) + [vertices[0]])
     ]
     self.inner_edges = [
         Edge(*e, figure=self) for e in combinations(vertices, 2)
     ]
     self.mpl_poly = MplPolygon(vertices, True, color=[1, 0, 0])
Exemplo n.º 2
0
    def plot(self, ax: GeoAxesSubplot, **kwargs) -> Artist:
        """Plotting function. All arguments are passed to the geometry"""

        if "facecolor" not in kwargs:
            kwargs["facecolor"] = "None"
        if "edgecolor" not in kwargs:
            kwargs["edgecolor"] = ax._get_lines.get_next_color()

        if "projection" in ax.__dict__:
            return ax.add_geometries([self.shape], crs=PlateCarree(), **kwargs)
        else:
            return ax.add_patch(
                MplPolygon(list(self.shape.exterior.coords), **kwargs))
Exemplo n.º 3
0
 def plot(self):
     # get coordinates in the Earth projection
     xvec, yvec = self.projected(self._earthmap)
     # create patch with coordinates
     self._patch = MplPolygon(xy=np.array([xvec, yvec]).T,
                              closed=True,
                              linestyle=self._linestyle,
                              linewidth=self._linewidth,
                              fill=False,
                              color=self._color)
     # add patch to plot
     self._parent.get_axes().add_patch(self._patch)
     # refresh plot
     self._parent.draw()
Exemplo n.º 4
0
    def plot(self, ax: "GeoAxesSubplot", **kwargs: Any) -> "Artist":
        """Plotting function. All arguments are passed to the geometry"""
        from cartopy.crs import PlateCarree
        from matplotlib.patches import Polygon as MplPolygon

        if "facecolor" not in kwargs:
            kwargs["facecolor"] = "None"
        if "edgecolor" not in kwargs:
            kwargs["edgecolor"] = ax._get_lines.get_next_color()

        if "projection" in ax.__dict__:
            return ax.add_geometries([self.shape], crs=PlateCarree(), **kwargs)
        else:
            return ax.add_patch(
                MplPolygon(list(self.shape.exterior.coords), **kwargs))
Exemplo n.º 5
0
    def plot(self, ax: GeoAxesSubplot, **kwargs) -> None:  # coverage: ignore
        flat = self.flatten()
        if isinstance(flat, base.BaseMultipartGeometry):
            for poly in flat:
                # quick and dirty
                sub = Airspace("", [ExtrudedPolygon(poly, 0, 0)])
                sub.plot(ax, **kwargs)
            return

        if "facecolor" not in kwargs:
            kwargs["facecolor"] = "None"
        if "edgecolor" not in kwargs:
            kwargs["edgecolor"] = ax._get_lines.get_next_color()

        if "projection" in ax.__dict__:
            ax.add_geometries([flat], crs=PlateCarree(), **kwargs)
        else:
            ax.add_patch(MplPolygon(list(flat.exterior.coords), **kwargs))
Exemplo n.º 6
0
def union_polygons(list_of_polygons):
    #accept few polygons and return their union, visualize them to make sure it's correct
    fig = plt.figure(figsize=(10, 8))
    ax = fig.add_subplot(111, axisbg='w', frame_on=False)
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)
    for spine in ax.spines.itervalues():
        spine.set_visible(False)
    m = Basemap(llcrnrlat=lllat,
                urcrnrlat=urlat,
                llcrnrlon=lllon,
                urcrnrlon=urlon,
                resolution='i',
                projection='cyl')

    m.drawmapboundary(fill_color='white')
    #m.drawcoastlines(linewidth=0.2)
    m.drawcountries(linewidth=0.2)
    shp_info = m.readshapefile('../localism/data/us_states_st99/st99_d00',
                               'states',
                               drawbounds=False,
                               zorder=0)
    regions = []
    for shapedict, state in zip(m.states_info, m.states):
        if shapedict['NAME'] in set(['California', 'Washington']):
            regions.append(state)
    polies = []
    for r in regions:
        poly = Polygon(r)
        polies.append(poly)
    poly = MultiPolygon(polies)
    poly = unary_union(poly).convex_hull
    lons, lats = poly.exterior.coords.xy
    coords = np.array(zip(lons, lats))

    poly = MplPolygon(coords, facecolor='gray', edgecolor='gray')
    ax.add_patch(poly)
    plt.show()
    result = None
    return result
Exemplo n.º 7
0
def contour(coordinates,
            scores,
            world=False,
            filename="contour",
            do_contour=False,
            **kwargs):
    #with open('./data/coordinate_socres.pkl', 'wb') as fout:
    #    pickle.dump((coordinates, scores), fout)
    with open('./data/coor_score_239.pkl', 'rb') as fin:
        coordinates, scores = pickle.load(fin)
    from matplotlib import rc
    rc('font', **{'family': 'sans-serif', 'sans-serif': ['Helvetica']})
    ## for Palatino and other serif fonts use:
    #rc('font',**{'family':'serif','serif':['Palatino']})
    rc('text', usetex=True)
    scores = np.array(scores)
    lllat = 24.396308
    lllon = -124.848974
    urlat = 49.384358
    urlon = -66.885444
    if world:
        lllat = -90
        lllon = -180
        urlat = 90
        urlon = 180

    fig = plt.figure(figsize=(2.5, 2))
    grid_transform = kwargs.get('grid', False)
    ax = fig.add_subplot(111, axisbg='w', frame_on=False)
    grid_interpolation_method = 'nearest'

    #scores = np.log(scores)

    m = Basemap(llcrnrlat=lllat,
                urcrnrlat=urlat,
                llcrnrlon=lllon,
                urcrnrlon=urlon,
                resolution='i',
                projection='cyl')

    m.drawmapboundary(fill_color='white')
    #m.drawcoastlines(linewidth=0.2)
    m.drawcountries(linewidth=0.2)
    if world:
        m.drawstates(linewidth=0.2, color='lightgray')
    #m.fillcontinents(color='white', lake_color='#0000ff', zorder=2)
    #m.drawrivers(color='#0000ff')
    #m.drawlsmask(land_color='gray',ocean_color="#b0c4de", lakes=True)
    #m.drawcounties()
    shp_info = m.readshapefile('./data/us_states_st99/st99_d00',
                               'states',
                               drawbounds=True,
                               zorder=0)
    printed_names = []
    ax = plt.gca()
    ax.xaxis.set_visible(False)
    ax.yaxis.set_visible(False)
    for spine in ax.spines.itervalues():
        spine.set_visible(False)

    state_names_set = set(short_state_names.values())
    mi_index = 0
    wi_index = 0
    for shapedict, state in zip(m.states_info, m.states):
        if world: break
        draw_state_name = True
        if shapedict['NAME'] not in state_names_set: continue
        short_name = short_state_names.keys()[short_state_names.values().index(
            shapedict['NAME'])]
        if short_name in printed_names and short_name not in ['MI', 'WI']:
            continue
        if short_name == 'MI':
            if mi_index != 3:
                draw_state_name = False
            mi_index += 1
        if short_name == 'WI':
            if wi_index != 2:
                draw_state_name = False
            wi_index += 1

        # center of polygon
        x, y = np.array(state).mean(axis=0)
        hull = ConvexHull(state)
        hull_points = np.array(state)[hull.vertices]
        x, y = hull_points.mean(axis=0)
        if short_name == 'MD':
            y = y - 0.5
            x = x + 0.5
        elif short_name == 'DC':
            y = y + 0.1
        elif short_name == 'MI':
            x = x - 1
        elif short_name == 'RI':
            x = x + 1
            y = y - 1
        #poly = MplPolygon(state,facecolor='lightgray',edgecolor='black')
        #x, y = np.median(np.array(state), axis=0)
        # You have to align x,y manually to avoid overlapping for little states
        if draw_state_name:
            plt.text(x + .1, y, short_name, ha="center", fontsize=4)
        #ax.add_patch(poly)
        #pdb.set_trace()
        printed_names += [
            short_name,
        ]
    mlon, mlat = m(*(coordinates[:, 1], coordinates[:, 0]))
    # grid data
    if do_contour:
        numcols, numrows = 2000, 2000
        xi = np.linspace(mlon.min(), mlon.max(), numcols)
        yi = np.linspace(mlat.min(), mlat.max(), numrows)

        xi, yi = np.meshgrid(xi, yi)
        # interpolate
        x, y, z = mlon, mlat, scores
        #pdb.set_trace()
        #zi = griddata(x, y, z, xi, yi)
        zi = gd((mlon, mlat),
                scores, (xi, yi),
                method=grid_interpolation_method,
                rescale=False)

        #Remove the lakes and oceans
        data = maskoceans(xi, yi, zi)
        con = m.contourf(xi, yi, data, cmap=plt.get_cmap('YlOrRd'))
    else:
        cmap = plt.get_cmap('YlOrRd')
        con = m.scatter(mlon, mlat, c=scores, s=3, cmap=cmap)
    #con = m.contour(xi, yi, data, 3, cmap=plt.get_cmap('YlOrRd'), linewidths=1)
    #con = m.contour(x, y, z, 3, cmap=plt.get_cmap('YlOrRd'), tri=True, linewidths=1)
    #conf = m.contourf(x, y, z, 3, cmap=plt.get_cmap('coolwarm'), tri=True)
    cbar = m.colorbar(con, location='right', pad="3%")
    #plt.setp(cbar.ax.get_yticklabels(), visible=False)
    #cbar.ax.tick_params(axis=u'both', which=u'both',length=0)
    #cbar.ax.set_yticklabels(['low', 'high'])
    #tick_locator = ticker.MaxNLocator(nbins=9)
    #cbar.locator = tick_locator
    #cbar.update_ticks()
    cbar.ax.tick_params(labelsize=6)
    cbar.ax.xaxis.set_tick_params(pad=0)
    cbar.ax.yaxis.set_tick_params(pad=0)
    cbar.set_label('error in km', size=8, labelpad=1)
    for line in cbar.lines:
        line.set_linewidth(20)

    #read countries for world dataset with more than 100 number of users
    with open('./data/country_count.json', 'r') as fin:
        top_countries = set(json.load(fin))
    world_shp_info = m.readshapefile(
        './data/CNTR_2014_10M_SH/Data/CNTR_RG_10M_2014',
        'world',
        drawbounds=False,
        zorder=100)
    for shapedict, state in zip(m.world_info, m.world):
        if not world:
            if shapedict['CNTR_ID'] not in ['CA', 'MX']: continue
        else:
            if shapedict['CNTR_ID'] in top_countries: continue
        poly = MplPolygon(state, facecolor='gray', edgecolor='gray')
        ax.add_patch(poly)
    #plt.title('term: ' + word )
    plt.tight_layout()
    plt.savefig('./maps/' + filename + '.pdf', bbox_inches='tight')
    plt.close()
    del m
Exemplo n.º 8
0
def map_words(coords, preds, vocab, map_dir, dataset_name):
    """
    given the coords distributed over the map and
    the unigram distribution over vocabulary pred,
    contourf the logprob of a word over the map
    with interpolation.
    """
    lllat = 24.396308
    lllon = -124.848974
    urlat =  49.384358
    urlon = -66.885444
    if dataset_name == 'world-final':
        lllat = -90
        lllon = -180
        urlat = 90
        urlon = 180
        
    grid_interpolation_method = 'cubic'
    logging.info('interpolation: ' + grid_interpolation_method)
    region_words = {
    "the north":['braht','breezeway','bubbler','clout','davenport','euchre','fridge','hotdish','paczki','pop','sack','soda','toboggan','Yooper'],
    "northeast":['brook','cellar','sneaker','soda'],
    "New England":['grinder','packie','rotary','wicked'],
    "Eastern New England":['bulkhead','Cabinet','frappe','hosey','intervale','jimmies','johnnycake','quahog','tonic'],
    "Northern New England":['ayuh','creemee','dooryard','logan','muckle'],
    "The Mid-Atlantic":['breezeway','hoagie','jawn','jimmies','parlor','pavement','shoobie','youze'],
    "New York City Area":['bodega','dungarees','potsy','punchball','scallion','stoop','wedge'],
    "The Midland":['hoosier'],
    "The South":['banquette','billfold','chuck','commode','lagniappe','yankee','yonder'],
    "The West":['davenport','Hella','snowmachine' ]
    }
    
    word_dialect = {}
    with open('./data/geodare.cleansed.filtered.json', 'r') as fin:
        for line in fin:
            line = line.strip()
            dialect_word = json.loads(line)
            word_dialect[dialect_word['word']] = dialect_word['dialect']
    
            

    #if os.path.exists(map_dir):
    #    shutil.rmtree(map_dir)
    try:
        os.mkdir(map_dir)
    except:
        logging.info('map_dir %s exists or can not be created.')
    
    #pick some words to map including some known dialect words
    #some DARE words and some words that are not evenly distributed
    topk_words = []    
    for words in region_words.values():
        topk_words.extend(words)
    topk_words.extend(word_dialect.keys())
    dialect_words = ['hella', 'yall', 'jawn', 'paczki', 'euchre', 'brat', 'toboggan', 'brook', 'grinder', 'yinz', 'youze', 'yeen']
    topk_words.extend(dialect_words)
    custom_words = ['springfield', 'columbia', 'n***a', 'niqqa', 'bamma', 'cooter', 'britches', 'yapper', 'younguns', 'hotdish', 
                    'schnookered', 'bubbler', 'betcha', 'dontcha']
    topk_words.extend(custom_words)
    vocabset = set(vocab)
    dare_in_vocab = set(word_dialect.keys()) & vocabset
    logging.info('%d DARE words, %d in vocab' %(len(word_dialect), len(dare_in_vocab)))
    add_local_words = True
    if add_local_words:
        ne_file = './dumps/ne_' + dataset_name + '.json'
        with codecs.open(ne_file, 'r', encoding='utf-8') as fout:
            NEs = json.load(fout)
        NEs = NEs['nes']
        local_words = get_local_words(preds, vocab, NEs=NEs, k=500)
        logging.info(local_words)
        topk_words.extend(local_words[0:20])
    
    add_cities = False
    if add_cities:
        with open('./data/cities.json', 'r') as fin:
            cities = json.load(fin)
        cities = cities[0:100]
        for city in cities:
            name = city['city'].lower()
            topk_words.append(name)
    wi = 0
    for word in topk_words:
        if word in vocabset:
            fig = plt.figure(figsize=(5, 4))
            ax = fig.add_subplot(111, axisbg='w', frame_on=False)
            logging.info('%d mapping %s' %(wi, word))
            wi += 1
            index = vocab.index(word)
            scores = np.log(preds[:, index])
            
            m = Basemap(llcrnrlat=lllat,
            urcrnrlat=urlat,
            llcrnrlon=lllon,
            urcrnrlon=urlon,
            resolution='i', projection='cyl')
            '''
            m = Basemap(llcrnrlon=-119,llcrnrlat=22,urcrnrlon=-64,urcrnrlat=49,
            projection='lcc',lat_1=33,lat_2=45,lon_0=-95, resolution='i')
            '''
            m.drawmapboundary(fill_color = 'white')
            #m.drawcoastlines(linewidth=0.2)
            m.drawcountries(linewidth=0.2)
            if dataset_name != 'world-fianl':
                m.drawstates(linewidth=0.2, color='lightgray')
            #m.fillcontinents(color='white', lake_color='#0000ff', zorder=2)
            #m.drawrivers(color='#0000ff')
            #m.drawlsmask(land_color='gray',ocean_color="#b0c4de", lakes=True)
            #m.drawcounties()
            shp_info = m.readshapefile('./data/us_states_st99/st99_d00','states',drawbounds=True, zorder=0)
            printed_names = []
            ax = plt.gca()
            ax.xaxis.set_visible(False) 
            ax.yaxis.set_visible(False) 
            for spine in ax.spines.itervalues(): 
                spine.set_visible(False) 

            state_names_set = set(short_state_names.values())
            mi_index = 0
            wi_index = 0
            for shapedict,state in zip(m.states_info, m.states):
                if dataset_name == 'world-final': break
                draw_state_name = True
                if shapedict['NAME'] not in state_names_set: continue
                short_name = short_state_names.keys()[short_state_names.values().index(shapedict['NAME'])]
                if short_name in printed_names and short_name not in ['MI', 'WI']: 
                    continue
                if short_name == 'MI':
                    if mi_index != 3:
                        draw_state_name = False
                    mi_index += 1
                if short_name == 'WI':
                    if wi_index != 2:
                        draw_state_name = False
                    wi_index += 1
                    
                # center of polygon
                x, y = np.array(state).mean(axis=0)
                hull = ConvexHull(state)
                hull_points = np.array(state)[hull.vertices]
                x, y = hull_points.mean(axis=0)
                if short_name == 'MD':
                    y = y - 0.5
                    x = x + 0.5
                elif short_name == 'DC':
                    y = y + 0.1
                elif short_name == 'MI':
                    x = x - 1
                elif short_name == 'RI':
                    x = x + 1
                    y = y - 1
                #poly = MplPolygon(state,facecolor='lightgray',edgecolor='black')
                #x, y = np.median(np.array(state), axis=0)
                # You have to align x,y manually to avoid overlapping for little states
                if draw_state_name:
                    plt.text(x+.1, y, short_name, ha="center", fontsize=8)
                #ax.add_patch(poly)
                #pdb.set_trace()
                printed_names += [short_name,] 
            mlon, mlat = m(*(coords[:,1], coords[:,0]))
            # grid data
            numcols, numrows = 1000, 1000
            xi = np.linspace(mlon.min(), mlon.max(), numcols)
            yi = np.linspace(mlat.min(), mlat.max(), numrows)

            xi, yi = np.meshgrid(xi, yi)
            # interpolate
            x, y, z = mlon, mlat, scores
            #pdb.set_trace()
            #zi = griddata(x, y, z, xi, yi)
            zi = gd(
                (mlon, mlat),
                scores,
                (xi, yi),
                method=grid_interpolation_method, rescale=False)

            #Remove the lakes and oceans
            data = maskoceans(xi, yi, zi)
            con = m.contourf(xi, yi, data, cmap=plt.get_cmap('YlOrRd'))
            #con = m.contour(xi, yi, data, 3, cmap=plt.get_cmap('YlOrRd'), linewidths=1)
            #con = m.contour(x, y, z, 3, cmap=plt.get_cmap('YlOrRd'), tri=True, linewidths=1)
            #conf = m.contourf(x, y, z, 3, cmap=plt.get_cmap('coolwarm'), tri=True)
            cbar = m.colorbar(con,location='right',pad="2%")
            #plt.setp(cbar.ax.get_yticklabels(), visible=False)
            #cbar.ax.tick_params(axis=u'both', which=u'both',length=0)
            #cbar.ax.set_yticklabels(['low', 'high'])
            tick_locator = ticker.MaxNLocator(nbins=9)
            cbar.locator = tick_locator
            cbar.update_ticks()
            cbar.ax.tick_params(labelsize=11) 
            cbar.ax.yaxis.set_tick_params(pad=2)
            cbar.set_label('logprob', size=11)
            for line in cbar.lines: 
                line.set_linewidth(10)
            
            #read countries for world dataset with more than 100 number of users
            with open('./data/country_count.json', 'r') as fin:
                top_countries = set(json.load(fin))
            world_shp_info = m.readshapefile('./data/CNTR_2014_10M_SH/Data/CNTR_RG_10M_2014','world',drawbounds=False, zorder=100)
            for shapedict,state in zip(m.world_info, m.world):
                if dataset_name != 'world-final':
                    if shapedict['CNTR_ID'] not in ['CA', 'MX']: continue
                else:
                    if shapedict['CNTR_ID'] in top_countries: continue
                poly = MplPolygon(state,facecolor='gray',edgecolor='gray')
                ax.add_patch(poly)
            #plt.title('term: ' + word )
            plt.tight_layout()
            filename = '{}{}_{}.pdf'.format(map_dir, word.encode('utf-8'), grid_interpolation_method)
            plt.savefig(filename, bbox_inches='tight')
            plt.close()
            del m