Exemplo n.º 1
0
def plot_bar_from_counter(counter, ax=None):
    """"
    This function creates a bar plot from a counter.

    :param counter: This is a counter object, a dictionary with the item as the key
     and the frequency as the value
    :param ax: an axis of matplotlib
    :return: the axis wit the object in it
    """

    if ax is None:
        fig = plt.figure()
        ax = fig.add_subplot(111)

    frequencies = counter.values()
    names = counter.keys()

    x_coordinates = np.arange(len(counter))
    rects = ax.bar(x_coordinates, frequencies, align='center')
    for i, v in enumerate(frequencies):
        ax.text(v, i, str(v), color='black', fontweight='bold')
    ax.xaxis.set_major_locator(plt.FixedLocator(x_coordinates))
    ax.xaxis.set_major_formatter(plt.FixedFormatter(names))
    ax.set_title("Histogram of BVA %s iterations" % '{0:,}'.format(iterations))
    autolabel(rects, ax)
    return ax
Exemplo n.º 2
0
    def generate_xticks(self, all_days, monthsamp=1):
        """
        generate xticks

        all_days: array of times (days since 01-0-0)
        """

        dd = pl.num2date(all_days)
        xticks = []
        xticklabels = []
        last_month = dd[0].month
        last_year = dd[0].year

        xticks.append(all_days[0])
        strmon = get_month_string(dd[0].month)
        if self.yearonly:
            xticklabels.append(str(dd[0].year))
        else:
            xticklabels.append(strmon + '\n' + str(dd[0].year))

        for d in dd:
            if (d.month != last_month) | (d.year != last_year):
                xticks.append(pl.date2num(d))  # save tick location
                mstr = get_month_string(d.month)
                if self.yearonly:
                    xticklabels.append(str(d.year))
                else:
                    if (d.year != last_year):
                        xticklabels.append(mstr + '\n' + str(d.year))
                    else:
                        xticklabels.append(mstr + '\n' + '')
                last_month = d.month
                last_year = d.year

        if self.transpose:
            scal = self.rescaley
        else:
            scal = self.rescalex
        xticks = np.asarray(xticks)

        # /// remap to image coordinates
        ny, nx = np.shape(self.hov)
        w = (xticks - pl.date2num(self.t_min)) / (
            pl.date2num(self.t_max) - pl.date2num(self.t_min)
        )  # weights for positions on x-axis

        xticks = w * nx * scal
        xticks = list(xticks)

        # here we have monthly ticks which we can now subsample
        xticks = xticks[::monthsamp]
        xticklabels = xticklabels[::monthsamp]

        self.x_major_locator = pl.FixedLocator(xticks)
        self.x_major_formatter = pl.FixedFormatter(xticklabels)
Exemplo n.º 3
0
    def plot(self,
             xticks=None,
             xlabel=None,
             ylabel=None,
             title='',
             grid=True,
             climits=None,
             figsize=None,
             origin=None,
             xtickrotation=0,
             cmap='jet',
             showcolorbar=True,
             ax=None,
             show_uncertainties=False,
             norm_uncertainties=False,
             input=None,
             showxticks=True,
             nclasses=11,
             lat_tick=np.arange(-90., 90 + 30., 30.),
             monthsamp=1,
             yearonly=True):
        """
        Generates a Hovmoeller plot

        Two different options are available to generate the plot. The plot can be either based on calculation from
        the Hovmoeller class itself. This requires that self.hov was calculated already using e.g. time_to_lat().
        The second option is, that a Data object is provided by the *input* variable. In this case, the zonal mean is calculated from
        the Data object all required processing is done in this routine.

        input : Data
            C{Data} object that is used for the generation of the hovmoeller plot
        grid : bool
            plot tick grid in hovmoeller plot
        ylabel : str
            ylabel for plot
        title : str
            title for the plot
        climits : list
            limits for the colorbar; [vmin,vmax]
        cmap : str
            colormap to be used
        xtickrotation : float
            rotation of xticklabels 0 ... 90
        showcolorbar : bool
            show colorbar in plot
        ax : axis
            axis to plot to. If not specified (default), then a new figure will be created
        showxticks : bool
            show the xticks in the Hovmoeller plot
        nclasses : int
            number of classes for colorbar
        lat_tick : ndarray
            tick labels for latitude (default: every 30 degree)
        monthsamp : int
            sampling interval for months
        yearonly : bool
            if True, then only the years are shown as labels in the timeseries

        input is expected to have dimensions [nlat,ntime] and can be precalculated using Data.get_zonal_mean().T
        input is expected to be a Data object!

        """

        if input is not None:
            if self.hov is not None:
                raise ValueError(
                    'If precalculated dat is provided as input, the data MUST not be calculated already by the class!'
                )
            else:
                #////////////////////////////////////////////////
                # HOVMOELLER PLOT FROM DATA OBJECT
                #////////////////////////////////////////////////

                input1 = input.get_zonal_mean(return_object=True)
                input1.adjust_time(day=1)  # , month=1)

                nlat, nt = input1.data.shape
                if nt != len(self.time):
                    print input1.shape
                    print nt, len(self.time)
                    raise ValueError('inconsistent time shape!')

                self.hov = input1.data
                self.yearonly = yearonly

                #/// check if latitudes are in increasing order ?
                lats = input1.lat * 1.
                if np.all(np.diff(lats) >= 0):
                    f_invert = False

                else:
                    f_invert = True
                    # change sequence of data!
                    lats = lats[::-1]

                    if not np.all(np.diff(lats) >= 0):
                        raise ValueError(
                            'Latitudes can not be put into ascending order!')

                #/// monthly ticks ///
                # convert times to monthly; apply date conversions to ensure
                # that generate_monthly_timeseries() can work following the
                # python convention
                data_days = generate_monthly_timeseries(
                    pl.date2num(input1.date))
                all_days = np.unique(data_days)
                if showxticks:
                    self.generate_xticks(all_days, monthsamp=monthsamp)

                # use only ticks that are within the current latitudes
                mlat = (lat_tick >= lats.min()) & (lat_tick <= lats.max())
                lat_tick1 = lat_tick[mlat]

                # interpolate the tick grid to the data grid
                # index positions
                lat_pos = np.interp(lat_tick1, lats, np.arange(len(lats)))

                if f_invert:  # invert position back
                    #lat_tick = lat_tick[::-1]
                    lat_pos = lat_pos[::-1]

                yticklabels = np.asarray(map(str, lat_tick1))

                if self.transpose:
                    scal = self.rescalex
                else:
                    scal = self.rescaley

                yticks = lat_pos * scal

                self.y_major_locator = pl.FixedLocator(yticks)
                self.y_major_formatter = pl.FixedFormatter(yticklabels)

                ylabel = 'latitude'

        if climits is None:
            raise ValueError('Hovmoeller, please specify climits')

        if xlabel is None:
            self.xlabel = 'x-label'
        else:
            self.xlabel = xlabel

        if figsize is None:
            if self.transpose:
                figsize = (6, 11)
            else:
                figsize = (12, 4)

        if ylabel is None:
            self.ylabel = 'y-label'
        else:
            self.ylabel = ylabel

        self.title = title

        if ax is None:
            self.fig = pl.figure(figsize=figsize)
            self.ax = self.fig.add_subplot(111)
        else:
            self.ax = ax
            self.fig = self.ax.figure

        if self.transpose:
            arr = self.hov.repeat(self.rescalex, axis=0).repeat(self.rescaley,
                                                                axis=1)
            self.im = self.ax.imshow(arr.T,
                                     interpolation='Nearest',
                                     origin=origin,
                                     vmin=climits[0],
                                     vmax=climits[1],
                                     cmap=pyplot.get_cmap(cmap, nclasses))
        else:
            # rescale array for visualization
            arr = self.hov.repeat(self.rescaley, axis=0).repeat(self.rescalex,
                                                                axis=1)
            self.im = self.ax.imshow(arr,
                                     interpolation='Nearest',
                                     origin=origin,
                                     cmap=pyplot.get_cmap(cmap, nclasses),
                                     vmin=climits[0],
                                     vmax=climits[1])

            if (show_uncertainties) & (self.hov_var is not None):
                arr1 = self.hov_var.repeat(self.rescaley,
                                           axis=0).repeat(self.rescalex,
                                                          axis=1)

                if norm_uncertainties:
                    # normalized by variance
                    arr1 = arr / arr1
                self.ax.contour(arr1, linestyles='-', colors='black')

        if xlabel is not None:
            self.ax.set_xlabel(self.xlabel)
        if ylabel is not None:
            self.ax.set_ylabel(self.ylabel)
        self.ax.set_title(self.title)

        #/// ticks
        if self.transpose:
            self.ax.yaxis.set_major_locator(self.x_major_locator)
            self.ax.yaxis.set_major_formatter(self.x_major_formatter)

            self.ax.xaxis.set_major_locator(self.y_major_locator)
            self.ax.xaxis.set_major_formatter(self.y_major_formatter)
        else:
            self.ax.yaxis.set_major_locator(self.y_major_locator)
            self.ax.yaxis.set_major_formatter(self.y_major_formatter)

            if showxticks:
                self.ax.xaxis.set_major_locator(self.x_major_locator)
                self.ax.xaxis.set_major_formatter(self.x_major_formatter)

        if showxticks:
            # pl.xticks(rotation=xtickrotation)
            for t in self.ax.get_xticklabels():
                t.set_rotation(xtickrotation)
        else:
            self.ax.set_xticks([])

        if xticks is not None:
            nx = 2
            set_label(nx)

        if grid:  # show grid
            self.ax.grid(color='white', linewidth=1, linestyle='-')

        #/// colorbar
        if showcolorbar:
            if self.transpose:
                self.fig.colorbar(self.im, orientation='vertical', shrink=0.5)
            else:
                # only do import here, as it does not work otherwise (todo)
                from plots import add_nice_legend
                add_nice_legend(self.ax, self.im,
                                pyplot.get_cmap(cmap, nclasses))