Exemplo n.º 1
0
 def invert_component(self, cls, w, z, h):
     """
     Invert a  single PLCA component to separated features in the original feature space.
     """
     w = P.atleast_2d(w)
     if cls == plca.PLCA: w = w.T
     h = P.atleast_2d(h)
     return cls.reconstruct(w, z, h)
Exemplo n.º 2
0
 def stack_vectors(data, win=1, hop=1, zero_pad=True):
     """
     ::
        create an overlapping stacked vector sequence from a series of vectors
         data - row-wise multidimensional data to stack
         win  - number of consecutive vectors to stack [1]
         hop  - number of vectors to advance per stack [1]
         zero_pad - zero pad if incomplete stack at end 
     """
     data = pylab.atleast_2d(data)
     nrows, dim = data.shape
     hop = min(hop, nrows)
     nvecs = nrows / int(hop) if not zero_pad else int(
         pylab.ceil(nrows / float(hop)))
     features = pylab.zeros((nvecs, win * dim))
     i = 0
     while i < nrows - win + 1:
         features[i / hop, :] = data[i:i + win, :].reshape(1, -1)
         i += hop
     if i / hop < nvecs:
         x = data[i::, :].reshape(1, -1)
         features[i / hop, :] = pylab.c_[x,
                                         pylab.zeros(
                                             (1, win * dim - x.shape[1]))]
     return features
Exemplo n.º 3
0
 def _pvoc2(self, X_hat, Phi_hat=None, R=None):
     """
     ::
       alternate (batch) implementation of phase vocoder - time-stretch
       inputs:
         X_hat - estimate of signal magnitude
         [Phi_hat] - estimate of signal phase
         [R] - resynthesis hop ratio
       output:
         updates self.X_hat with modified complex spectrum
     """
     N, W, H = self.nfft, self.wfft, self.nhop
     R = 1.0 if R is None else R
     dphi = P.atleast_2d((2 * P.pi * H * P.arange(N / 2 + 1)) / N).T
     print("Phase Vocoder Resynthesis...", N, W, H, R)
     A = P.angle(self.STFT) if Phi_hat is None else Phi_hat
     U = P.diff(A, 1) - dphi
     U = U - P.np.round(U / (2 * P.pi)) * 2 * P.pi
     t = P.arange(0, n_cols, R)
     tf = t - P.floor(t)
     phs = P.c_[A[:, 0], U]
     phs += U[:, idx[1]] + dphi  # Problem, what is idx ?
     Xh = (1 - tf) * Xh[:-1] + tf * Xh[1:]
     Xh *= P.exp(1j * phs)
     self.X_hat = Xh
Exemplo n.º 4
0
 def _phase_map(self):
     self.dphi = (2 * P.pi * self.nhop *
                  P.arange(self.nfft / 2 + 1)) / self.nfft
     A = P.diff(P.angle(self.STFT), 1)  # Complete Phase Map
     U = P.c_[P.angle(self.STFT[:, 0]), A - P.atleast_2d(self.dphi).T]
     U = U - P.np.round(U / (2 * P.pi)) * 2 * P.pi
     self.dPhi = U
     return U
Exemplo n.º 5
0
    def _ichroma(self, V, **kwargs):
        """
        ::

            Inverse chromagram transform. Make a signal from a folded constant-Q transform.
        """
        if not (self._have_hcqft or self._have_cqft):
            return None
        a, b = self.HCQFT.shape if self._have_hcqft else self.CQFT.shape
        complete_octaves = a / self.nbpo  # integer division, number of complete octaves
        if P.remainder(a, self.nbpo):
            complete_octaves += 1
        X = P.repeat(V, complete_octaves, 0)[:a, :]  # truncate if necessary
        X /= X.max()
        X *= P.atleast_2d(P.linspace(1, 0,
                                     X.shape[0])).T  # weight the spectrum
        self.x_hat = self._icqft(X, **kwargs)
        return self.x_hat
Exemplo n.º 6
0
 def extract(self):
     Features.extract(self)
     mf = (self.X.T * self._logfrqs).sum(1) / self.X.T.sum(1)
     self.X = (((self.X / self.X.T.sum(1)).T *
                ((P.atleast_2d(self._logfrqs).T - mf)).T)**2).sum(1)