def ColLegManager(colours=None, legend=None, N=None):
    # If no dict of colours_map or legend or N has been entered
    if not colours:
        colours = None
    if not legend:
        legend = None
    if not N:
        N = len(legend) + 1

    # Constructing list of indexes for alphabetically ordered molecule names in 'legend'
    if legend is not None:
        order = np.argsort(legend)
        print("Order_of_mol_names: ", list(order))

    def ColMatcher(*names):
        for name in names:
            if mol.find(name) != -1:
                cols.append(key)
        return cols

    cols = []
    if colours is not None:
        # Sorting molecules by colours:
        for mol in legend:
            for key in list(colours.keys()):
                cmap = colours[key]
                if isinstance(cmap, (list, tuple)):
                    ColMatcher(*cmap)
                else:
                    ColMatcher(cmap)

        print("Input_legend:       ", legend)
        print("Matched_col_maps:   ", cols)

        # Creating list of different colour shades from selected colour map for each molecule:
        paintings = [0] * len(cols)

        # Matching different shades from selected colour map for each molecule, the gradient respects the alphabetical
        # order of the molecules' names (first molecule is always the darkest, the shade gets lighter with each next)
        q = 0
        num_of_col = len(Counter(cols).keys())
        for num in range(0, num_of_col):
            clr = cols[order[q]]
            numocc = cols.count(clr)
            gradient = np.linspace(0.2, 1, 2 * numocc + 1)
            for i in range(0, numocc):
                loc = order[i + q]
                paintings[loc] = plt.get_cmap(clr)(1 - gradient[i])
            q = q + numocc

    # Default setting - gradient of colours of preset colour map
    if colours is None:
        paintings = [0] * N
        gradient = np.linspace(0.2, 1, N)
        j = 0
        for o in order:
            paintings[o] = plt.get_cmap('inferno_r')(1 - gradient[j])
            j = j + 1

    return [order, paintings]
Exemplo n.º 2
0
def multiplot_hexbin(b, s):
    f1 = 'DER_mass_transverse_met_lep'
    f2 = 'DER_mass_MMC'
    f3 = 'DER_mass_jet_jet'
    f4 = 'DER_pt_h'
    feature_pairs = list(itertools.combinations([f1, f2, f3, f4], 2))
    feature_pairs_ = list(itertools.chain(*zip(feature_pairs, feature_pairs)))
    b_clean = b[(b[f1] != -999.0) & (b[f2] != -999.0) & (b[f3] != -999.0) &
                (b[f4] != -999.0)]
    s_clean = s[(s[f1] != -999.0) & (s[f2] != -999.0) & (s[f3] != -999.0) &
                (s[f4] != -999.0)]
    plt.figure(figsize=(15, 15))
    multiplot_range = xrange(6)
    for i, k in zip(multiplot_range, feature_pairs_[0:6]):
        plt.subplot(str(32) + str(i + 1))
        if i % 2:
            plot_hexbin(s_clean, s_clean['Weight'], plt.get_cmap('Reds'), k)
        else:
            plot_hexbin(b_clean, b_clean['Weight'], plt.get_cmap('Blues'), k)
    plt.tight_layout()
    filename = '../Graphs/scatter1.png'
    print 'Saving plot in ' + filename
    plt.savefig(filename)
    plt.figure(figsize=(15, 15))
    multiplot_range = xrange(6)
    for i, k in zip(multiplot_range, feature_pairs_[6:12]):
        plt.subplot(str(32) + str(i + 1))
        if i % 2:
            plot_hexbin(s_clean, s_clean['Weight'], plt.get_cmap('Reds'), k)
        else:
            plot_hexbin(b_clean, b_clean['Weight'], plt.get_cmap('Blues'), k)
    plt.tight_layout()
    filename = '../Graphs/scatter2.png'
    print 'Saving plot in ' + filename
    plt.savefig(filename)
Exemplo n.º 3
0
def get_cmap(cmap=None):
    """Get the color map.

    Parameters
    ----------
    cmap: str, mpl.colors.Colormap
        The colormap can be provided as the name (should be in matplotlib or cmocean colormaps),
        or as matplotlib colormap object.

    Returns
    -------
    colormap:mpl.colors.Colormap
        Matplotlib colormap object.

    """
    if cmap:
        if isinstance(cmap, (mpl.colors.Colormap)):
            colormap = cmap
        elif cmap in cmo.cmapnames:
            colormap = cmo.cmap_d[cmap]
        elif cmap in plt.colormaps():
            colormap = plt.get_cmap(cmap)
        else:
            raise ValueError(
                "Get unrecognised name for the colormap `{}`. Colormaps should be from standard matplotlib set of from cmocean package."
                .format(cmap))
    else:
        colormap = plt.get_cmap("Spectral_r")

    return colormap
Exemplo n.º 4
0
def plot_spectrogram_to_numpy2(spectrogram1, spectrogram2, save_name):
    fig, (ax1, ax2) = plt.subplots(nrows=2,
                                   ncols=1,
                                   figsize=(3, 3),
                                   sharex=True,
                                   sharey=True)
    im = ax1.imshow(spectrogram1,
                    vmin=-11.53,
                    vmax=-0.5,
                    aspect="auto",
                    origin="lower",
                    cmap=plt.get_cmap('magma'),
                    interpolation='none')
    plt.colorbar(im, ax=ax1)
    plt.xlabel("Frames")
    plt.ylabel("Channels")
    plt.tight_layout()

    ax2 = plt.subplot(2, 1, 2)
    im2 = ax2.imshow(spectrogram2,
                     vmin=-11.53,
                     vmax=-0.5,
                     aspect="auto",
                     origin="lower",
                     cmap=plt.get_cmap('magma'),
                     interpolation='none')
    plt.colorbar(im2, ax=ax2)
    plt.xlabel("Frames")
    plt.ylabel("Channels")
    plt.tight_layout()
    plt.savefig(save_name)
Exemplo n.º 5
0
def plot_sun_image(img, filename, wavelength, title = '', vmin=0.0, vmax = 1.0):
    if wavelength == 'hmi':
        cmap = plt.get_cmap('hmimag')
    else:
        cmap = plt.get_cmap('sdoaia{}'.format(wavelength))
    plt.title(title)
    plt.imshow(img,cmap=cmap,origin='lower',vmin=vmin, vmax=vmax)
    plt.savefig(filename)
    plt.close("all")
Exemplo n.º 6
0
def draw_mask(img, mask, blend=.5, cmap=None, interp='cubic'):
    if not cmap:
        import matplotlib.pylab as plt
        cmap = plt.get_cmap('jet')
    if isinstance(cmap, str):
        import matplotlib.pylab as plt
        cmap = plt.get_cmap(cmap)

    if mask.shape[:2] != img.shape[:2]:
        mask = imresize(mask, img.shape[:2], interp=interp)
    return (cmap(mask)[:, :, :3] * 255 * blend + img *
            (1 - blend)).round().astype('uint8')
Exemplo n.º 7
0
def visualize(model, latent_dim, rangee, epoch):
    viz = []
    random_index = np.random.randint(len(X)-1)
    X_random = X[random_index]
    zi, zi_std = model.encode(torch.Tensor(X_random))
    for j in range(latent_dim): # for each latent
        buf = []   
        for i in rangee: # updating the z by adding the value in rangee
            x = zi.clone()
            x[j] += i
            zi2 = torch.zeros(latent_dim)
            gen_imgs = model.decode(model.reparameterize_static(x, zi2))
            gen_imgs_np = gen_imgs.data.numpy()
            buf.append(gen_imgs_np)
        viz.append(buf)
    
    lw = 2
    N, M = 5, int(latent_dim / 5) # latent_dim = M x N. 
    cmap = plt.get_cmap('RdYlGn_r')
    colors = cmap(np.linspace(0, 1.0,len(rangee)).tolist())
    fig, axs = plt.subplots(M, N, sharex=True, sharey=True, figsize=(int(N*4), int(M*4)))

    lantent_idx = 0
    for i in range(M): # M: rows
        for j in range(N): # N: columns
            axs[i, j].plot(X_random, ls = '--', color = 'black', label='sample')
            ts = np.array(viz[lantent_idx]).T
            for k, value in enumerate(rangee):
                axs[i, j].plot(ts[:,k], lw=lw, color=colors[k], label='z_%s+=%s'%(lantent_idx, rangee[k]))
            axs[i, j].set_title('Updating z_%s, and others fixed'%lantent_idx)
            axs[i, j].legend(bbox_to_anchor=(0, 0.02), loc=3, borderaxespad=0.2, ncol=2)
            lantent_idx += 1
    fig.suptitle('Training: epoch_%s with total %s latent states = %s'%(epoch,latent_dim, str(np.round(zi.tolist(),2))))
    fig.savefig(figure_path + '/epoch_%s.png'%epoch, format="png")
Exemplo n.º 8
0
    def __init__(self,
                 obs_df,
                 ref_name,
                 var_name,
                 period,
                 how=np.mean,
                 annual_rule='A'):
        self.period = period
        self.var_name = var_name
        self.ref_name = ref_name
        self.aggr_how = how
        self.annual_rule = annual_rule

        obs_df = obs_df.loc[(obs_df.index >= period[0])
                            & (obs_df.index <= period[-1])]
        self.obs = New()
        self.obs.data = obs_df
        self.obs.freq = infer_freq(obs_df)
        if self.obs.freq != 'y':
            self.obs.monthly = self.obs.data.resample(rule='m',
                                                      how=self.aggr_how)
        self.obs.annual = self.obs.data.resample(rule='A', how=self.aggr_how)
        #        self.obs.freq = infer_freq(obs_df)
        self.models = ObjectDict()
        self._cmap = plt.get_cmap('gist_rainbow')
        self.selection = Selector([])
Exemplo n.º 9
0
def simulate_sequence(D, L, iterations, min_size, max_size, step_size, loop_avoid, reflect):

    poly = Polymer(D, L, loop_avoid, reflect=reflect)
    data = []

    for N in range(min_size,max_size, step_size):
        print N #Poor's man progress bar
        data_per_N = []
        bad_number = 0
        for i in range(iterations):
            (last, count, grid) = poly.create_polymer(N)
            dist = linalg.norm(last - poly.start_point)
            #print [dist,count,N]
            df = pd.DataFrame({"dist":[dist], "N": [N], "count" : [count]})
            data.append(df)

            #Save some example realization.
            if i == 10 and D == 2:
                pylab.figure()
                pylab.imshow(grid, cmap=pylab.get_cmap("binary"), interpolation="none")
                pylab.savefig("realization_N=%d_self_avoid=%d" % (N, loop_avoid))

        bad_ratio = 1.0*bad_number/iterations
        if bad_ratio > 0.02:
            print "To many bads with N=%d. Bad ratio %.3f" % (N, bad_ratio)


        #draw_distribution(D,L,N,iterations,loop_avoid, data_per_N)


        #R2 = (data_per_N**2).mean()
        #data.append((R2, N))

    data = pd.concat(data)
    return data
Exemplo n.º 10
0
def ShowSlice(vals, min_val, max_val):
	import matplotlib.pyplot as plt

	# tell imshow about color map so that only set colors are used
	img = plt.imshow(vals,cmap = plt.get_cmap('gray'),vmin=min_val, vmax=max_val)

	plt.show()
def plot_3d(arr, colorsMap='jet'):
    def make_2d_to_3d_array(arr1):
        x = []
        y = []
        z = []
        for i in range(0, len(arr1)):
            for j in range(0, len(arr1[0])):
                x.append(i)
                y.append(j)
                z.append(arr1[i][j])
        return [x, y, z]

    points = make_2d_to_3d_array(arr)
    cm = plt.get_cmap(colorsMap)
    cNorm = matplotlib.colors.Normalize(vmin=min(points[2]),
                                        vmax=max(points[2]))
    scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm)
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    ax.scatter(points[0], points[1], points[2], c=scalarMap.to_rgba(points[2]))
    scalarMap.set_array(points[2])
    cbar = fig.colorbar(scalarMap)
    cbar.ax.tick_params(labelsize=20)
    ax.tick_params(axis='x', labelsize=20)
    ax.tick_params(axis='y', labelsize=20)
    ax.tick_params(axis='z', labelsize=20)
    # ax.set_xlabel("X direction",fontsize = 20)
    # ax.set_ylabel("Y direction",fontsize = 20)
    # ax.set_zlabel("Temperature",fontsize = 20)
    plt.show()
Exemplo n.º 12
0
def showImagesGrid(imageDatas,
                   colCnt=None,
                   rowCnt=None,
                   gap=0.03,
                   sigsize=5,
                   cmap=None):
    plt.figure(figsize=(sigsize, sigsize))
    imgSize = len(imageDatas)
    if cmap is None:
        cmap = plt.get_cmap('gray')

    if rowCnt is None:
        if colCnt is None:
            colCnt = math.ceil(math.sqrt(imgSize))
        rowCnt = colCnt

    for idx in range(imgSize):
        plt.subplot(colCnt, rowCnt, idx + 1)
        plt.imshow(imageDatas[idx], cmap=cmap)
        plt.axis("off")
    plt.subplots_adjust(left=0.1,
                        bottom=0.1,
                        right=0.9,
                        top=0.9,
                        wspace=gap,
                        hspace=gap)
    plt.show()
Exemplo n.º 13
0
    def __init__(self,name):
        self.name=name
        self.log=False
        self.filter=lambda x:x
        self.vmin=None
        self.vmax=None
        self._norm=None
        self.compression=6
        self.set_depth(8)

        m=CM_RE.match(name)
        if m!=None:
            LOG.debug("%s -> %s",name,repr(m.groups()))
            cmap,min_val,max_val,under_color,over_color,bad_color=m.groups()
            if cmap.endswith('-log'):
                self.filter=np.log10
                self.log=True
                cmap=cmap[:-4]
            self.cmap=get_cmap(cmap)

            if min_val and max_val: 
                self.set_minmax(float(min_val),float(max_val))

            if under_color: self.cmap.set_under('#'+under_color[:6],alpha=int(under_color[6:],16)/255.0 if under_color[6:] else 1.0)
            if over_color: self.cmap.set_over('#'+over_color[:6],alpha=int(over_color[6:],16)/255.0 if over_color[6:] else 1.0)
            if bad_color: self.cmap.set_bad('#'+bad_color[:6],alpha=int(bad_color[6:],16)/255.0 if bad_color[6:] else 1.0)

        try:
            from PIL import Image
            self.Image=Image
            self._write=self._write_pil
            LOG.debug('Using PIL for image writing')
        except ImportError:
            self._write=self._write_png
            LOG.debug('Using PNG for image writing')
Exemplo n.º 14
0
    def plot_param_by_run(self, bins, h, lbl, logscale=False, ax=None):

        #runs = np.linspace(self.runs[0]-0.5, self.runs[-1]+0.5, self.nrun+1)
        runs = np.linspace(0.5, self.nrun + 0.5, self.nrun + 1)
        hmn = np.min(h[h > 0])
        hmn = 1e-4

        y, x = np.meshgrid(runs, bins, indexing='ij')

        plt.rc('text', usetex=True)
        plt.rc('font', family='serif', size=16)

        if ax is None:
            fig = plt.figure(figsize=(16, 4))
            ax = fig.gca()

        cmap = plt.get_cmap()
        cmap.set_bad(cmap(0))

        ax.pcolor(x, y, h, norm=LogNorm(), vmin=hmn, cmap=cmap)
        if logscale:
            ax.set_xscale('log')
        ax.set_ylim(self.nrun + 0.5, 0.5)

        ax.set_xlabel(lbl)
        ax.set_ylabel("run")

        #ax.get_xaxis().set_major_formatter(LogFormatterExponent())
        #ax.get_xaxis().set_minor_formatter(ScalarFormatter())

        ax.set_yticks(runs[:-1] + 0.5)
        ax.set_yticklabels(self.runs, fontsize=14)
Exemplo n.º 15
0
def plot_image(img, img_number, row0, col0, img_size, vmin=0, vmax=600):
    """
    Plot 6x6 or 8x8 background image

    :param img: current bgd image, always 8x8
    :param img_number: number of image, or number of time frame,
                       to fetch appropriate item from row0/col0
    :param row0: list with size=nframes containing IMGROW0
    :param row0: list with size=nframes containing IMGCOL0
    :img_size: image size, 8px for ER, 6px for Science,
               to fetch and plot bgd image part used for bgd subtraction
    """

    r_min, r_max, c_min, c_max = patch_coords(row0, col0, img_size)

    # +3 chosen arbitrary, to plot a bit larger area
    data = vmin * np.ones((c_max - c_min + 3, r_max - r_min + 3))

    dr = row0[img_number] - r_min
    dc = col0[img_number] - c_min

    data[dr:dr + img_size, dc:dc + img_size] = img[:img_size, :img_size]

    im = plt.imshow(data,
                    cmap=plt.get_cmap('hot'),
                    interpolation='none',
                    origin='lower',
                    vmin=vmin,
                    vmax=vmax)

    return im
Exemplo n.º 16
0
def get_colormap(ptype, units="mm/h", colorscale="pysteps"):
    """
    Function to generate a colormap (cmap) and norm.

    Parameters
    ----------
    ptype : {'intensity', 'depth', 'prob'}, optional
        Type of the map to plot: 'intensity' = precipitation intensity field,
        'depth' = precipitation depth (accumulation) field,
        'prob' = exceedance probability field.
    units : {'mm/h', 'mm', 'dBZ'}, optional
        Units of the input array. If ptype is 'prob', this specifies the unit of
        the intensity threshold.
    colorscale : {'pysteps', 'STEPS-BE', 'BOM-RF3'}, optional
        Which colorscale to use. Applicable if units is 'mm/h', 'mm' or 'dBZ'.

    Returns
    -------
    cmap : Colormap instance
        colormap
    norm : colors.Normalize object
        Colors norm
    clevs: list(float)
        List of precipitation values defining the color limits.
    clevs_str: list(str)
        List of precipitation values defining the color limits (with correct
        number of decimals).
    """
    if ptype in ["intensity", "depth"]:
        # Get list of colors
        color_list, clevs, clevs_str = _get_colorlist(units, colorscale)

        cmap = colors.LinearSegmentedColormap.from_list(
            "cmap", color_list, len(clevs) - 1
        )

        if colorscale == "BOM-RF3":
            cmap.set_over("black", 1)
        if colorscale == "pysteps":
            cmap.set_over("darkred", 1)
        if colorscale == "STEPS-BE":
            cmap.set_over("black", 1)
        norm = colors.BoundaryNorm(clevs, cmap.N)

        cmap.set_bad("gray", alpha=0.5)
        cmap.set_under("none")

        return cmap, norm, clevs, clevs_str

    if ptype == "prob":
        cmap = copy.copy(plt.get_cmap("OrRd", 10))
        cmap.set_bad("gray", alpha=0.5)
        cmap.set_under("none")
        clevs = np.linspace(0, 1, 11)
        clevs[0] = 1e-3  # to set zeros to transparent
        norm = colors.BoundaryNorm(clevs, cmap.N)
        clevs_str = [f"{clev:.1f}" for clev in clevs]
        return cmap, norm, clevs, clevs_str

    return cm.get_cmap("jet"), colors.Normalize(), None, None
Exemplo n.º 17
0
def makePlot(iFile, title, pltz, c):

	roiMat = []
	for l in iFile:
		roiMat.append(l)
	roiMat = np.array(roiMat)
	roiMat = roiMat.astype(np.float)

	axes = plt.subplot2grid((4,1), (c, 0))
	pltz.append(axes)
	#pltz[c].set_title(title)

	#_#_#_#_#_#

	cmap = plt.get_cmap(lut=np.nanmax(roiMat)-np.nanmin(roiMat)+1)
	pltz[c].matshow(roiMat, aspect='auto', cmap=cmap, vmin=0, vmax=40)
	#pltz[c].colorbar(label='Count')
	if c == 3:	
		pltz[c].set_xlabel('ROI')
	pltz[c].set_ylabel(title)


	if c == 0:
		pltz[c].set_xticks(range(30))
		pltz[c].set_xticklabels(["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30"])
	else:
		pltz[c].set_xticklabels([])	

	pltz[c].set_yticks(range(7))
	pltz[c].set_yticklabels(["E", "G", "L", "M", "R", "S", "W"], rotation =90)

	for asd, cas in enumerate(roiMat):
		for sdf, c in enumerate(cas):
				plt.text(sdf-.4, asd+.2, int(c), fontsize=8)
Exemplo n.º 18
0
    def plot_value_function(self, value_function, prefix, v_folder):
        fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
        X, Y = np.meshgrid(np.arange(self.config.input_size[1]),
                           np.arange(self.config.input_size[0]))
        reproj_value_function = value_function.reshape(
            self.config.input_size[0], self.config.input_size[1])
        """Build the support"""
        for i in range(len(X)):
            for j in range(int(len(X[i]) / 2)):
                tmp = X[i][j]
                X[i][j] = X[i][len(X[i]) - j - 1]
                X[i][len(X[i]) - j - 1] = tmp

        cm.jet(
            np.random.rand(reproj_value_function.shape[0],
                           reproj_value_function.shape[1]))

        ax.plot_surface(X,
                        Y,
                        reproj_value_function,
                        rstride=1,
                        cstride=1,
                        cmap=plt.get_cmap('jet'))
        plt.gca().view_init(elev=30, azim=30)
        plt.savefig(
            os.path.join(v_folder,
                         "SuccessorFeatures" + prefix + 'value_function.png'))
        plt.close()
Exemplo n.º 19
0
def get_cmap(cmap_name):
    """Return matplotlib colormap object.

    From matplotlib.cm or cmocean.
    Additional custom colormap for salinity is provided:
    - "custom_salinity1"
    """
    cm.register_cmap(name='cubehelix3',
                     data=mpl._cm.cubehelix(gamma=1.0, s=2.0, r=1.0, h=3))

    if cmap_name in cmo.cmapnames:
        colormap = cmo.cmap_d[cmap_name]
    elif cmap_name in plt.colormaps():
        colormap = plt.get_cmap(cmap_name)
    elif cmap_name == "custom_salinity1":
        colormap = shiftedcolormap(cm.get_cmap("cubehelix3"),
                                   start=0,
                                   midpoint=0.89,
                                   stop=0.9,
                                   name='shiftedcmap')
    else:
        raise ValueError('Get unrecognised name for the colormap `{}`.\
                            Colormaps should be from standard matplotlib \
                            set or from cmocean package.'.format(cmap_name))
    return colormap
Exemplo n.º 20
0
def getPolyFit(deg=6):
    #{{{docstring
    """
    Get the polynomial fit

    Parameters
    ----------
    deg : int
        Degree of polynomial to use

    Returns
    -------
    p : array
        The polynomial coefficients in ascending order.
        NOTE: This is revesered as compared to np.polyfit
    polyStr : str
        String of the polynomial function.
        Meant to use in a C++ program.
    """
    #}}}
    cmap = plt.get_cmap("viridis")
    p = np.polyfit(TeEV, nuEN, deg)
    # polyfit gives coefficients of highest polynomial first
    p = p[::-1]
    polyStr = ""
    for i in range(deg + 1):
        polyStr += "{:+f}*pow(Te0_, {})\n".format(p[i], i)

    if polyStr[0] == "+":
        polyStr = polyStr[1:]
    polyStr = "nuEN = (nn/2.5e-19)*(\n" + polyStr
    polyStr += ");"

    return p, polyStr
Exemplo n.º 21
0
def make_prediction(i):
    test_img = test_images[i]
    test_data= x_test[[i], :]

    plt.imshow(test_img, cmap=plt.get_cmap('gray'))
    plt.title("Model Prediction: {}".format(num_to_text[model.predict_classes(test_data)[0]]))
    plt.show()
Exemplo n.º 22
0
def ShowSlice(vals, min_val, max_val):
	import matplotlib.pyplot as plt

	# tell imshow about color map so that only set colors are used
	img = plt.imshow(vals,cmap = plt.get_cmap('gray'),vmin=min_val, vmax=max_val)

	plt.show()
Exemplo n.º 23
0
    def plot_value_function(self, value_function, prefix, folder=None):
        if folder is None:
            folder = self.summary_path
        '''3d plot of a value function.'''
        fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
        X, Y = np.meshgrid(np.arange(self.config.input_size[1]),
                           np.arange(self.config.input_size[0]))
        Z = value_function.reshape(self.config.input_size[0],
                                   self.config.input_size[1])

        for i in range(len(X)):
            for j in range(int(len(X[i]) / 2)):
                tmp = X[i][j]
                X[i][j] = X[i][len(X[i]) - j - 1]
                X[i][len(X[i]) - j - 1] = tmp

        my_col = cm.jet(np.random.rand(Z.shape[0], Z.shape[1]))

        ax.plot_surface(X,
                        Y,
                        Z,
                        rstride=1,
                        cstride=1,
                        cmap=plt.get_cmap('jet'))
        plt.gca().view_init(elev=30, azim=30)
        plt.savefig(
            os.path.join(folder,
                         "SuccessorFeatures" + prefix + 'value_function.png'))
        plt.close()
Exemplo n.º 24
0
    def plotBasisFunctions(self, eigenvalues, eigenvectors):
        """3d plot of the basis function. Right now I am plotting eigenvectors,
		   so each coordinate of the eigenvector correspond to the value to be
		   plotted for the correspondent state."""
        for i in range(len(eigenvalues)):
            fig, ax = plt.subplots(subplot_kw=dict(projection="3d"))
            X, Y = np.meshgrid(np.arange(self.numRows),
                               np.arange(self.numCols))
            Z = eigenvectors[:, i].reshape(self.numCols, self.numRows)

            for ii in range(len(X)):
                for j in range(len(X[ii]) // 2):
                    tmp = X[ii][j]
                    X[ii][j] = X[ii][len(X[ii]) - j - 1]
                    X[ii][len(X[ii]) - j - 1] = tmp

            my_col = cm.jet(np.random.rand(Z.shape[0], Z.shape[1]))

            ax.plot_surface(X,
                            Y,
                            Z,
                            rstride=1,
                            cstride=1,
                            cmap=plt.get_cmap("jet"))
            plt.gca().view_init(elev=30, azim=30)
            plt.savefig(self.outputPath + str(i) + "_eig" + ".png")
            plt.close()

        plt.plot(eigenvalues, "o")
        plt.savefig(self.outputPath + "eigenvalues.png")
Exemplo n.º 25
0
    def visualize_model(self):
        '''
        VISUALIZATION
        TO DO: qualitative analysis of a confusion matrix from the 2d display
        '''
        plt.figure( figsize=(7,7))
        cm = plt.get_cmap('viridis')
        colors = iter( cm( np.linspace(0,1,10)))
        for digit in range(10):
            # train_images = x_train[ train_digit_indices[digit]]
            # train_vector = base_network.predict( train_images)
            # train_vector = np.mean( train_vector, axis=0)
            # test_images = x_test[ test_digit_indices[digit]]
            # test_vector = base_network.predict( test_images)
            # test_vector = np.mean( test_vector, axis=0)
            # print( train_vector, test_vector)
            color = next(colors)
            # plt.quiver( 0,0 , *train_vector, label='%d train'%digit, color=color)
            # plt.quiver( 0,0, *test_vector, label='%d test'%digit, color=color)
            # plt.plot( *train_vector.reshape(2,1), label='%d train'%digit, color=color, marker=r'$%d$'%digit, markersize=22, ls='none')
            # plt.plot( *test_vector.reshape(2,1), label='%d train'%digit, color=color, marker=r'$%d$'%digit, markersize=22, ls='none')

            # running for train, test concatenation (because we checked similarity)
            images = np.concatenate( (self.x_train[ self.train_digit_indices[digit]], self.x_test[ self.test_digit_indices[digit]]), axis=0)
            vector = self.base_network.predict( images, batch_size=128)
            # vector = np.mean( vector, axis=0)
            # plt.plot( *vector.reshape(2,1), label='%d'%digit, color=color, marker=r'$%d$'%digit, markersize=22, ls='none')
            # PLOTTING DISTRIBUTION INSTEAD
            x, y = vector.T
            sns.kdeplot(x, y, shade=True, shade_lowest=False, color=color, label=digit)
        plt.legend(ncol=2)
        plt.xticks( [])
        plt.yticks( [])
        plt.tight_layout()
        plt.show()
Exemplo n.º 26
0
    def plotValueFunction(self, valueFunction, prefix):
        '''3d plot of a value function.'''
        fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
        X, Y = np.meshgrid(np.arange(self.numCols), np.arange(self.numRows))
        Z = valueFunction.reshape(self.numRows, self.numCols)

        for i in range(len(X)):
            for j in range(int(len(X[i]) / 2)):
                tmp = X[i][j]
                X[i][j] = X[i][len(X[i]) - j - 1]
                X[i][len(X[i]) - j - 1] = tmp

        my_col = cm.jet(np.random.rand(Z.shape[0], Z.shape[1]))

        ax.plot_surface(X,
                        Y,
                        Z,
                        rstride=1,
                        cstride=1,
                        cmap=plt.get_cmap('jet'))
        plt.gca().view_init(elev=30, azim=30)
        plt.savefig(
            os.path.join(self.outputPath,
                         "SuccessorFeatures" + prefix + 'value_function.png'))
        plt.close()
Exemplo n.º 27
0
def multicolcheck(pipeline,
                  subsample=0.03,
                  dA=20,
                  xrange=[-1000, 3000],
                  yrange=[-1000, 6000]):
    p = pipeline
    plt.figure()
    plt.subplot(1, 2, 1)
    estimator = scatterdens(p['fitResults_Ag'],
                            p['fitResults_Ar'],
                            subsample=subsample,
                            s=10)
    plt.xlim(xrange)
    plt.ylim(yrange)

    x1d = np.arange(xrange[0], xrange[1], dA)
    y1d = np.arange(yrange[0], yrange[1], dA)
    x2d = x1d[:, None] * np.ones_like(y1d)[None, :]
    y2d = np.ones_like(x1d)[:, None] * y1d[None, :]

    imd = estimator.evaluate([x2d.flatten(), y2d.flatten()])
    imd2d = imd.reshape(x2d.shape)
    imd2d /= imd2d.max()

    #plt.figure()
    plt.subplot(1, 2, 2)
    plt.imshow(imd2d[:, ::-1].transpose(),
               cmap=plt.get_cmap('jet'),
               extent=[xrange[0], xrange[1], yrange[0], yrange[1]])
    plt.grid(True)

    return imd2d
Exemplo n.º 28
0
def draw_matrix_user_ranking(df_stat, higher_better=False, fig=None):
    """ show matrix as image, sorted per column and unique colour per user

    :param DF df_stat: table where index are users and columns are scoring
    :param bool higher_better: ranking such that larger value is better
    :return Figure:

    >>> import pandas as pd
    >>> df = pd.DataFrame(np.random.random((5, 3)), columns=list('abc'))
    >>> fig = draw_matrix_user_ranking(df)
    """
    ranking = compute_matrix_user_ranking(df_stat, higher_better)

    if fig is None:
        fig, _ = plt.subplots(
            figsize=np.array(df_stat.as_matrix().shape[::-1]) * 0.35)
    ax = fig.gca()
    arange = np.linspace(-0.5, len(df_stat) - 0.5, len(df_stat) + 1)
    norm = plt_colors.BoundaryNorm(arange, len(df_stat))
    fmt = plt_ticker.FuncFormatter(lambda x, pos: df_stat.index[x])

    draw_heatmap(ranking,
                 np.arange(1,
                           len(df_stat) + 1),
                 df_stat.columns,
                 ax=ax,
                 cmap=plt.get_cmap('nipy_spectral', len(df_stat)),
                 norm=norm,
                 cbar_kw=dict(ticks=range(len(df_stat)), format=fmt),
                 cbarlabel='Users')
    ax.set_ylabel('Ranking')

    return fig
Exemplo n.º 29
0
def plot_runs(runs):
    """ Plot population evolutions
    """
    ts = range(len(runs[0]))
    cmap = plt.get_cmap('viridis')
    for i, r in enumerate(runs):
        mean, var = zip(*r)
        bm, cm = zip(*mean)
        bv, cv = zip(*var)

        color = cmap(float(i)/len(runs))

        plt.errorbar(ts, bm, fmt='-', yerr=bv, c=color)
        plt.errorbar(ts, cm, fmt='--', yerr=cv, c=color)

    plt.title('population evolution overview')
    plt.xlabel('time')
    plt.ylabel('value')

    plt.ylim((0, 1))

    plt.plot(0, 0, '-', c='black', label='benefit value')
    plt.plot(0, 0, '--', c='black', label='cost value')
    plt.legend(loc='best')

    plt.savefig('result.pdf')
    plt.show()
Exemplo n.º 30
0
    def plot_IR_distribution(self, bR, bI, H, ax=None):

        plt.rc('text', usetex=False)
        plt.rc('font', family='serif', size=16)
        plt.rc('xtick', labelsize=14)
        plt.rc('ytick', labelsize=14)
        plt.rc('axes', labelsize=16)
        plt.rc('axes', titlesize=16)

        if ax is None:
            fig = plt.figure(figsize=(8, 6))
            ax = fig.gca()

        cmap = plt.get_cmap()
        cmap.set_bad(cmap(0))
            
        x, y = np.meshgrid(bR, bI)
        im = ax.pcolor(x, y, H, norm=LogNorm(), cmap=cmap)
        ax.set_yscale('log')
        ax.set_xscale('log')
        
        ax.set_ylabel(self.lbl[1])
        ax.set_xlabel(self.lbl[2])

        return im
Exemplo n.º 31
0
def colorize(vector,cmap='plasma', vmin=None, vmax=None):
    """Convert a vector to RGBA colors.

    Parameters
    ----------
    vector : array
        Array of values to be represented by relative colors     
    cmap : str (optional)
        Matplotlib Colormap name
    vmin : float (optional)
        Minimum value for color normalization. Defaults to np.min(vector)
    vmax : float (optional)
        Maximum value for color normalization. Defaults to np.max(vector)
        
    Returns
    -------
    vcolors : np.ndarray
        Array of RGBA colors
    scalarmap : matplotlib.cm.ScalarMappable
        ScalerMap to convert values to colors
    cNorm : matplotlib.colors.Normalize
        Color normalization
    """
    
    if vmin is None: vmin = np.min(vector)
    if vmax is None: vmax = np.max(vector)    
    
    cm = plt.get_cmap(cmap)
    cNorm  = colors.Normalize(vmin=vmin, vmax=vmax)
    scalarmap = cmx.ScalarMappable(norm=cNorm, cmap=cm)
    vcolors = scalarmap.to_rgba(vector)
    
    return vcolors,scalarmap,cNorm
Exemplo n.º 32
0
def random_colormap(N, colormap='jet', name='random', seed=None):
    """ 
    Create a random ordered colormap.  Default settings creates a colormap named 'random'
    using the jet colormap.
    
    Parameters
    -----------
    N : int 
        Number of bins in the colormap.
        
    colormap : str (optional)
        Name of matplotlib colormap
    
    name : str (optional)
        Name of the colormap
    
    seed : int or None
        Random seed
        
    Returns
    --------
    cmap : matplotlib.colors.ListedColormap object
    """
    if seed is not None:
        np.random.seed(seed)

    vals = np.arange(0, 1, 1 / N)
    np.random.shuffle(vals)
    cmap = plt.get_cmap(colormap)
    cmap_random = ListedColormap(cmap(vals), name=name)

    return cmap_random
Exemplo n.º 33
0
def plot_line_colored(x, y, t, w=None, color=None, cmap=None):
    import numpy as np
    from matplotlib.collections import LineCollection

    # Create a set of line segments so that we can color them individually
    # This creates the points as a N x 1 x 2 array so that we can stack points
    # together easily to get the segments. The segments array for line collection
    # needs to be numlines x points per line x 2 (x and y)
    points = np.array([x, y]).T.reshape(-1, 1, 2)
    segments = np.concatenate([points[:-1], points[1:]], axis=1)

    extra = {}
    if w is None: extra['linewidths'] = w

    # Create the line collection object, setting the colormapping parameters.
    # Have to set the actual values used for colormapping separately.
    lc = LineCollection(segments,
                        cmap=p.get_cmap(cmap),
                        **extra
                        #norm=p.Normalize(0, 10)
                        )
    lc.set_array(t)
    lc.set_linewidth(w)

    if color is not None:
        lc.set_color(color)

    p.gca().add_collection(lc)
    def over_plot_googlemap(self):
 
        import folium
        from folium import plugins
        import matplotlib.colors as colors
        import matplotlib.cm as cmx

        colorMap = plt.get_cmap('cool')
        cNorm = colors.Normalize(vmin=1920, vmax=1990)
        scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=colorMap)

        x = self.dic_nodes['x']; y = self.dic_nodes['y'] 
        Lead = 10**np.array( self.dic_nodes['value'] ) - 1.
        Year = self._generate_new_value(tag='Year Built')

        map = folium.Map(location=[43.0125, -83.6875], zoom_start=13)

        for i in range(len(x)):       
            colorVal = scalarMap.to_rgba(Year[i])
            colorVal = colors.rgb2hex(colorVal)
            radius = 40*np.sqrt(Lead[i])
            disc = 'Expected Lead : %i\n'%Lead[i] +\
                   'Expected Year : %i\n'%Year[i]
            folium.CircleMarker([y[i], x[i]], radius=radius,
                       popup=disc, color=None,
                       fill_color=colorVal).add_to(map)

        map.create_map(path='prediction.html')        
def pie_plot_important_activities_2018(
):  # pie_plot_important_activities_2018(kaggleSurveyDF_2018, schemaSurveyDF_2018 ):
    responseCountsList = []
    responseOptionsTextListAnnotated = [
        'Analyze and understand data',
        'Use ML services to improve product or wokflows',
        'Build/run data infrastructure',
        'Apply ML to new areas and build prototypes',
        'Research/advance state of the art in ML',
        'Other / None of these activities are important to my role'
    ]

    responseCountsList = [9532, 5481, 5233, 7233, 4934, 4663]

    plt.figure()
    plt.pie(x=responseCountsList,
            labels=responseOptionsTextListAnnotated,
            startangle=90,
            autopct='%1.1f%%',
            wedgeprops={
                'linewidth': 1,
                'edgecolor': 'white'
            },
            colors=np.array(plt.get_cmap('tab20').colors))
    plt.title(
        'What activities make up an important part of your role at work?')
    plt.show()
Exemplo n.º 36
0
def draw_custom(G,
                pos=None,
                node_size=1000,
                edge_width=3,
                font_size=12,
                node_color='white',
                color_map='Blues',
                edge_label=None):
    """Draw the graph G using Matplotlib.

    Draw the graph with Matplotlib with options for node positions,
    labeling, titles, and many other drawing features.

    """
    if not pos:
        pos = nx.circular_layout(G)

    nx.draw_networkx_nodes(G, pos, node_color=node_color, node_size=node_size)

    nx.draw_networkx_edges(G,
                           pos,
                           width=edge_width,
                           edge_color=range(nx.number_of_edges(G)),
                           edge_cmap=plt.get_cmap(color_map),
                           edge_vmin=-10,
                           edge_vmax=10)

    nx.draw_networkx_labels(G, pos, font_size=font_size)

    nx.draw_networkx_edge_labels(G,
                                 pos,
                                 edge_labels=nx.get_edge_attributes(
                                     G, edge_label))

    plt.axis('off')
Exemplo n.º 37
0
def plot_basis_function(args, x_range, y_range, basis, prefix):
    """
    Plots 3d graph where the x and y coordinates represent the grid and the z axis encodes the value to be depicted.
    One could use this to look at q-values, for example. In my work, I've used this plot to show proto-value functions,
    the successor representation, or eigenvectors.

    :param args: list of all arguments passed at the execution so we can access the paths we are interested at
    :param x_range: one of the dimensions of the grid world
    :param y_range: the other dimension of the grid world
    :param basis: actual values to be plotted
    :param prefix: string that will be used as the filename of the generated graph
    """
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    # fig, ax = plt.subplots(subplot_kw=dict(projection='3d'))
    data_x, data_y = np.meshgrid(np.arange(y_range), np.arange(x_range))
    data_z = basis.reshape(x_range, y_range)

    for ii in range(len(data_x)):
        for j in range(int(len(data_x[ii]) / 2)):
            tmp = data_x[ii][j]
            data_x[ii][j] = data_x[ii][len(data_x[ii]) - j - 1]
            data_x[ii][len(data_x[ii]) - j - 1] = tmp

    ax.plot_surface(data_x,
                    data_y,
                    data_z,
                    rstride=1,
                    cstride=1,
                    cmap=plt.get_cmap('jet'))
    plt.gca().view_init(elev=30, azim=30)
    plt.gca().set_zlim(-1.0, 1.0)
    plt.savefig(args.output + prefix + '.png')
    plt.close()
    plt.clf()
Exemplo n.º 38
0
def plot(lon, lat, var1, var2, actions, ax, fig, **kwargs):
    aspect = kwargs.get('aspect', None)
    height = kwargs.get('height')
    width = kwargs.get('width')
    norm = kwargs.get('norm')
    cmap = get_cmap(kwargs.get('cmap', 'jet'))
    cmin = kwargs.get('cmin', "None")
    cmax = kwargs.get('cmax', "None")
    magnitude = kwargs.get('magnitude', 'False')
    if var1 is not None:
        if var2 is not None:
            mag = np.sqrt(var1**2 + var2**2)
        else:
            if magnitude == 'False':
                mag = var1
            else:
                mag = np.abs(var1)
        mag = mag.squeeze()
        if "pcolor" in actions:
            fig.set_figheight(height/80.0)
            fig.set_figwidth(width/80.0)
            pcolor(lon, lat, mag, ax, cmin, cmax, cmap)
        if "facets" in actions:
            fig.set_figheight(height/80.0)
            fig.set_figwidth(width/80.0)
            pcolor(lon, lat, mag, ax, cmin, cmax, cmap)
        elif "filledcontours" in actions:
            fig.set_figheight(height/80.0)
            fig.set_figwidth(width/80.0)
            fcontour(lon, lat, mag, ax, norm, cmin, cmax, cmap)
        elif "contours" in actions:
            fig.set_figheight(height/80.0)
            fig.set_figwidth(width/80.0)
            contour(lon, lat, mag, ax, norm, cmin, cmax, cmap)
        #elif "facets" in actions:
        #    fig.set_figheight(height/80.0)
        #    fig.set_figwidth(width/80.0)
        #    facet(lon, lat, mag, ax)
        elif "vectors" in actions:
            fig.set_figheight(height/80.0/aspect)
            fig.set_figwidth(width/80.0)
            vectors(lon, lat, var1, var2, mag, ax, norm, cmap, magnitude)
        elif "unitvectors" in actions:
            fig.set_figheight(height/80.0/aspect)
            fig.set_figwidth(width/80.0)
            unit_vectors(lon, lat, var1, var2, mag, ax, norm, cmap, magnitude)
        elif "streamlines" in actions:
            fig.set_figheight(height/80.0/aspect)
            fig.set_figwidth(width/80.0)
            m = kwargs.get('basemap')
            lonmin = kwargs.get("lonmin")
            latmin = kwargs.get("latmin")
            lonmax = kwargs.get("lonmax")
            latmax = kwargs.get("latmax")
            streamlines(lon, lat, var1, var2, mag, ax, norm, cmap, magnitude, m, lonmin, latmin, lonmax, latmax)
        elif "barbs" in actions:
            fig.set_figheight(height/80.0/aspect)
            fig.set_figwidth(width/80.0)
            barbs(lon, lat, var1, var2, mag, ax, norm, cmin, cmax, cmap, magnitude)
Exemplo n.º 39
0
def plotConfiguration(conf):
    
    cmap = plt.get_cmap('viridis')
    fig, ax = plt.subplots()
    for i in range(0,conf.orbitals):
        ax.plot(conf.configurations[0:conf.beads,i,1],range(0,conf.beads),"o",color=cmap(i*1./conf.orbitals));
        
    return {"fig":fig,"ax":ax}
Exemplo n.º 40
0
def plotIntensity(data): #plots intensity in color map
  plot = data.sumPols().getData()
  if len(plot.shape) != 2: #check if waterfall file is valid
      sys.exit("Waterplot may only plot waterfall files")
  vmin, vmax = vlim(plot) #get color scale
      
  if isinstance(data, Data.SpecData):
      t_all = data.getTrange()
      f_all = data.getFrange()
      plt.imshow(plot.T, aspect='auto', interpolation='nearest', 
             origin='lower', cmap=plt.get_cmap('Greys'), 
             extent= t_all + f_all, vmin=vmin, vmax=vmax)
  elif isinstance(data, Data.Data):
      plt.imshow(plot.T, aspect='auto', interpolation='nearest', 
             origin='lower', cmap=plt.get_cmap('Greys'), 
             vmin=vmin, vmax=vmax)
  plt.show()
Exemplo n.º 41
0
def plot_sun_image(img, filename, wavelength=193, title = ''):
    #cmap = plt.get_cmap('sdoaia{}'.format(wavelength))
    cmap = plt.get_cmap('sohoeit195')
    plt.title(title)
    cax = plt.imshow(img,cmap=cmap,origin='lower',vmin=0, vmax=3000)#,vmin=vmin, vmax=vmax)
    plt.gcf().colorbar(cax)
    plt.savefig(filename)
    plt.close("all")
Exemplo n.º 42
0
def group_causality(sig_list, condition, freqs, ROI_labels=None,
                    out_path=None, submount=10):

    """
    Make group causality analysis, by evaluating significant matrices across
    subjects.
    ----------
    sig_list: list
        The path list of individual significant causal matrix.
    condition: string
        One condition of the experiments.
    freqs: list
        The list of interest frequency band.
    min_subject: string
        The subject for the common brain space.
    submount: int
        Significant interactions come out at least in 'submount' subjects.
    """
    print 'Running group causality...'
    set_directory(out_path)
    sig_caus = []

    for f in sig_list:
        sig_cau = np.load(f)
        print sig_cau.shape[-1]
        sig_caus.append(sig_cau)

    sig_caus = np.array(sig_caus)
    sig_group = sig_caus.sum(axis=0)
    plt.close()
    for i in xrange(len(sig_group)):
        fmin, fmax = freqs[i][0], freqs[i][1]
        cau_band = sig_group[i]
        # cau_band[cau_band < submount] = 0
        cau_band[cau_band < submount] = 0
        # fig, ax = pl.subplots()
        cmap = plt.get_cmap('hot', cau_band.max()+1-submount)
        cmap.set_under('gray')
        plt.matshow(cau_band, interpolation='nearest', vmin=submount, cmap=cmap)
        if ROI_labels == None:
            ROI_labels = np.arange(cau_band.shape[0]) + 1
        pl.xticks(np.arange(cau_band.shape[0]), ROI_labels, fontsize=9, rotation='vertical')
        pl.yticks(np.arange(cau_band.shape[0]), ROI_labels, fontsize=9)
        # pl.imshow(cau_band, interpolation='nearest')
        # pl.set_cmap('BlueRedAlpha')
        np.save(out_path + '/%s_%s_%sHz.npy' %
                (condition, str(fmin), str(fmax)), cau_band)
        v = np.arange(submount, cau_band.max()+1, 1)

        # cax = ax.scatter(x, y, c=z, s=100, cmap=cmap, vmin=10, vmax=z.max())
        # fig.colorbar(extend='min')

        plt.colorbar(ticks=v, extend='min')
        # pl.show()
        plt.savefig(out_path + '/%s_%s_%sHz.png' %
                    (condition, str(fmin), str(fmax)), dpi=300)
        plt.close()
    return
Exemplo n.º 43
0
Arquivo: fconf.py Projeto: pyIPP/trgui
def colors(numcolors,map='spectral'):
    std_col = ['r','b','g','m']
    if numcolors <= 4:
        return std_col[:numcolors]
    cm=plt.get_cmap(map)
    col = []
    for i in range(numcolors):
        col.append(cm(1.*i/numcolors))
    return col
Exemplo n.º 44
0
def showGraph(graph):
    G_adj = adjacencyList(np.array(graph))
    G = nx.DiGraph(G_adj)
    # nx.write_adjlist(G_adj, )
    #initialze Figure
    pos = nx.spring_layout(G)
    nx.draw_networkx_nodes(G, pos, cmap=plt.get_cmap('jet'))
    nx.draw_networkx_edges(G, pos,  edge_color='b', arrows=True)
    plt.show()
Exemplo n.º 45
0
def plot_matrix(matrix):
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.set_title("colorMap")
    vmax = np.max(np.max(matrix), -1 * np.min(matrix))
    plt.imshow(matrix, interpolation="none", cmap=plt.get_cmap("seismic"), vmin=-1 * vmax, vmax=vmax)
    ax.set_aspect("equal")
    plt.colorbar(orientation="vertical")
    plt.show()
Exemplo n.º 46
0
def color_by_prop(propArr, nbins):
	colorArr = []
	for icl in xrange(nbins):
		colorArr.append(plt.get_cmap("hsv")(float(icl)/(nbins)))

	color_id_Arr = N.zeros_like(propArr)
	#propbins = N.logspace(N.log10(colorprops*0.99), N.log10(colorprops*1.01), ncolor+1)
	p_ids, p_bins = pTdf.group_by_prop(propArr, takelog=True, fixed_interval=True, bins=[])
	return p_ids, p_bins, colorArr
Exemplo n.º 47
0
    def __init__(self,vmin=None,vmax=None,
                 filter=lambda x:x, 
                 depth=8,compression=None,
                 colormap=plt.get_cmap('jet'),
                 over_color=None, over_alpha=1.0,
                 under_color=None, under_alpha=1.0,
                 bad_color=None, bad_alpha=1.0,
                 gamma=1.0):
        self.filter=filter

        if vmin!=None and vmax!=None:
            self.set_minmax(float(vmin),float(vmax))
        else:
            self.vmin=None
            self.vmax=None
            self._norm=None
        if compression!=None:
            compression=int(compression)
        self.compression=compression

        self.set_depth(int(depth))

        if isinstance(colormap,str):
            self.colormap=plt.get_cmap(colormap)
        else:
            self.colormap=colormap
        if over_color!=None:
            try:
                int(over_color,16)
                over_color='#'+over_color
            except ValueError:
                pass
            self.colormap.set_over(over_color,alpha=float(over_alpha))
        if under_color!=None:
            try:
                int(under_color,16)
                under_color='#'+under_color
            except ValueError:
                pass
            self.colormap.set_under(under_color,alpha=float(under_alpha))
        if bad_color!=None:
            self.colormap.set_bad(bad_color,alpha=float(bad_alpha))
        self.colormap.set_gamma(float(gamma))
Exemplo n.º 48
0
 def _plot_colormap(self,cm):
     r=Renderer(colormap=plt.get_cmap(cm))
     name=os.path.join(self.dir,cm+"_h.png")
     if not os.path.exists(name):
         f=open(name,'wb')
         r.write_h_colorbar(f)
         f.close()
     name=os.path.join(self.dir,cm+"_v.png")
     if not os.path.exists(name):
         f=open(name,'wb')
         r.write_v_colorbar(f)
         f.close()
Exemplo n.º 49
0
def plot_2d(params_dir):
    model_dirs = [name for name in os.listdir(params_dir)
                  if os.path.isdir(os.path.join(params_dir, name))]
    if len(model_dirs) == 0:
      model_dirs = [params_dir]


    colors = plt.get_cmap('plasma')
    plt.figure(figsize=(20, 10))
    ax = plt.subplot(111)
    ax.set_xlabel('Learning Rate')
    ax.set_ylabel('Error rate')

    i = 0
    for model_dir in model_dirs:
        model_df = pd.DataFrame()
        for param_path in glob.glob(os.path.join(params_dir,
                                                 model_dir) + '/*.h5'):
            param = dd.io.load(param_path)
            gd = {'learning rate': param['hyperparameters']['learning_rate'],
                  'momentum': param['hyperparameters']['momentum'],
                  'dropout': param['hyperparameters']['dropout'],
                  'val. objective': param['best_epoch']['validate_objective']}
            model_df = model_df.append(pd.DataFrame(gd, index=[0]),
                                       ignore_index=True)
        if i != len(model_dirs) - 1:
            ax.scatter(model_df['learning rate'],
                       model_df['val. objective'],
                       s=128,
                       marker=(i+3, 0),
                       edgecolor='black',
                       linewidth=model_df['dropout'],
                       label=model_dir,
                       c=model_df['momentum'],
                       cmap=colors)
        else:
            im = ax.scatter(model_df['learning rate'],
                            model_df['val. objective'],
                            s=128,
                            marker=(i+3, 0),
                            edgecolor='black',
                            linewidth=model_df['dropout'],
                            label=model_dir,
                            c=model_df['momentum'],
                            cmap=colors)
        i += 1

    plt.colorbar(im, label='Momentum')
    plt.legend()
    plt.show()
    plt.savefig('{}.eps'.format(os.path.join(IMAGES_DIRECTORY, 'params2d')), format='eps', dpi=1000)
    plt.close()
Exemplo n.º 50
0
def visualize(y_true,y_pred,img):

    score = accuracy_score(y_true, y_pred)
    print '\n accuracy score : ', score

    h, w = img.shape
    target_pred = y_pred.reshape(h, w)
    target_true = y_true.reshape(h, w)

    fig1 = plt.figure(1)
    plt.imshow(img, cmap=plt.get_cmap('gray'))
    plt.hold(True)
    plt.imshow(target_pred, alpha=0.7)
    plt.title('Predicted target - accuracy_score : %s' % round(score, 3))

    fig2 = plt.figure(2)
    plt.imshow(img, cmap=plt.get_cmap('gray'))
    plt.hold(True)
    plt.imshow(target_true, alpha=0.7)
    plt.title('True target')

    plt.show()
def __display_clusters(centers, clusters, iterations, name, suffix, place):

    fig = pylab.figure()
    ax = fig.add_subplot(111)

    N = len(centers)

    colors_id = numpy.array(range(N), dtype=numpy.float32) / (N - 1)
    cm = pylab.get_cmap('jet')
    colors = cm(colors_id)

    cid = 0
    for c in clusters:
        for p in c:
            x = p[0]
            if p.shape[0] > 1:
                y = p[1]
            else:
                y = 0
            ax.scatter([x], [y], c=colors[cid], marker='o')
        cid += 1

    cid = 0
    for c in centers:
        x = c[0]
        if c.shape[0] > 1:
            y = c[1]
        else:
            y = 0
        ax.scatter([x], [y], c=colors[cid], s=200, marker='^')
        cid += 1

    #ax.set_ylabel('True positive rate')
    #ax.set_xlabel('False positive rate')

    title = name + ' clustering'
    title += '\n' + filename
    title += ' [' + place + '] '
    title += ' [iterations=' + str(iterations)
    if data_size != 0:
        title += ' data size=' + str(data_size)
    title += ']'
    ax.set_title(title)

    ofname = filename + suffix + "_clustering_" + name + "_" + place

    pylab.savefig(ofname + ".pdf")
    pylab.savefig(ofname + ".eps")
    pylab.savefig(ofname + ".svg")
Exemplo n.º 52
0
def draw_cool_graph(G, fig_no=1, node_size=100):
  colors = [deg for _, deg in G.degree_iter()]
  fig = plt.figure(fig_no)
  fig.clear()
  nx.draw_spring(G,
    node_color=colors,
    vmin=min(colors),
    vmax=max(colors),
    cmap=plt.get_cmap('cool'),
    node_size=node_size,
    alpha=.5,
    width=.3,
    edge_color="#FFFFFF"
  )
  fig.set_facecolor("#000000")
  return fig
Exemplo n.º 53
0
def plot(lon, lat, lonn, latn, nv, var1, var2, actions, m, ax, fig, **kwargs):
    patch1 = None
    aspect = kwargs.get('aspect', None)
    height = kwargs.get('height')
    width = kwargs.get('width')
    norm = kwargs.get('norm')
    cmap = get_cmap(kwargs.get('cmap', 'jet'))
    cmin = kwargs.get('cmin', "None")
    cmax = kwargs.get('cmax', "None")
    magnitude = kwargs.get('magnitude', "False")
    topology_type = kwargs.get('topology_type', 'node')
    fig.set_figheight(height/80.0)
    fig.set_figwidth(width/80.0)
    if var1 is not None:
        if var2 is not None:
            mag = np.sqrt(var1**2 + var2**2)
        else:
            if magnitude == "True":
                mag = np.abs(var1)
            else:
                mag = var1
        mag = mag.squeeze()
        if "facets" in actions:
            facet(lon, lat, lonn, latn, mag, nv, m, ax, norm, cmin, cmax, cmap, topology_type, kwargs)
        elif "vectors" in actions:
            vectors(lon, lat, lonn, latn, var1, var2, mag, nv, m, ax, norm, cmap, magnitude, topology_type)
        elif "unitvectors" in actions:
            unit_vectors(lon, lat, lonn, latn, var1, var2, mag, nv, m, ax, norm, cmap, magnitude, topology_type)
        #elif "streamlines" in actions:
        #    streamlines(lon, lat, lonn, latn, var1, var2, mag, m, ax, norm, cmap, magnitude, topology_type)
        elif "barbs" in actions:
            barbs(lon, lat, lonn, latn, var1, var2, mag, m, ax, norm, cmin, cmax, cmap, magnitude, topology_type)
        else:
            lonmin = kwargs.get("lonmin")
            latmin = kwargs.get("latmin")
            lonmax = kwargs.get("lonmax")
            latmax = kwargs.get("latmax")
            dataset = kwargs.get("dataset")
            continuous = kwargs.get("continuous")
            projection = kwargs.get("projection")
            if "pcolor" in actions:
                fig, m = pcolor(lon, lat, lonn, latn, mag, nv, m, ax, norm, cmap, topology_type, fig, height, width, lonmin, latmin, lonmax, latmax, dataset, continuous, projection)
            elif "filledcontours" in actions:
                fig, m = fcontour(lon, lat, lonn, latn, mag, nv, m, ax, norm, cmin, cmax, cmap, topology_type, fig, height, width, lonmin, latmin, lonmax, latmax, dataset, continuous, projection)
            elif "contours" in actions:
                fig, m = contour(lon, lat, lonn, latn, mag, nv, m, ax, norm, cmin, cmax, cmap, topology_type, fig, height, width, lonmin, latmin, lonmax, latmax, dataset, continuous, projection)
    return fig, m
Exemplo n.º 54
0
        def make_xy_plot(graph, tag_1, tag_2):

            import matplotlib.pyplot as plt
            import matplotlib.colors as colors
            import matplotlib.cm as cmx

            Lead = np.log10( np.array(self.data['Lead (ppb)']) + 1.0 )
            plt.figure(figsize=(20,20))
            jet    = plt.get_cmap('seismic')
            cNorm  = colors.Normalize(vmin=0.3, vmax=1.3)
            scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=jet)

            for x, y, col in zip(np.array(self.data[tag_1]), 
                            np.array(self.data[tag_2]), Lead):
                colorVal = scalarMap.to_rgba(col)
                plt.plot(x, y, '.', color=colorVal)

            plt.savefig('./output/graph_vis/Lead.png', bbox_inches='tight')
Exemplo n.º 55
0
    def __init__(
            self,
            colour=None,
            symbol=None,
            label=None,
            level_names=None,
            colour_map=None,
            colour_bar_title=None,
            size=5,
            colours=None):

        self.colour = colour
        self.symbol = symbol
        self.label = label
        self.level_names = level_names
        self.colour_map = get_cmap(colour_map)
        self.colour_bar_title = colour_bar_title
        self.size = size
        self.colours = colours
Exemplo n.º 56
0
def plot_color_multigraph(G, graph_colors, n_rows, n_cols, node_size=100, fig_no=1):
  fig = plt.figure(fig_no)
  fig.clear()
  for k, (name, colors) in enumerate(graph_colors):
    plt.subplot(n_rows, n_cols, k + 1)
    plt.title(name, color='white')
    nx.draw_graphviz(G,  # this is expensive but at least it's consistent.
      node_color=colors,
      vmin=min(colors),
      vmax=max(colors),
      cmap=plt.get_cmap('cool'),
      alpha=.5,
      width=.3,
      edge_color="#FFFFFF",
      node_size=node_size
    )

  fig.set_facecolor("#000000")
  return fig
 def sliderupdate(val):
     val = int(val)
     nonzeroc = len(np.nonzero(self.mmc.classvec_ws)[0])
     if val > nonzeroc:
         claims = val - nonzeroc
         newclazz = 1
     elif val < nonzeroc:
         claims = nonzeroc - val
         newclazz = 0
     else: return
     print 'Claimed', claims, 'points for class', newclazz   #val, nonzeroc, claims
     self.claims = claims
     mmc.claim_n_points(claims, newclazz)
     steepness_vector = mmc.compute_steepness_vector()
     X = [steepness_vector, steepness_vector]
     self.slider_axis2.imshow(X, cmap=plt.get_cmap("Oranges"))
     self.slider_axis2.set_aspect('auto')
     self.redrawall(newslider = False) #HACK!
     self.prevnewclazz = newclazz
Exemplo n.º 58
0
    def init(self, data_len):
        """ Initialize plots. """
        self._t = 0
        self._data_len = data_len
        self._data = np.empty((0, data_len))

        cm = plt.get_cmap('spectral')
        self._plots = []
        for i in range(data_len):
            color = cm(1.0 * i / data_len)
            alpha = self._alphas[i] if self._alphas is not None else 1.0
            label = self._labels[i] if self._labels is not None else str(i)
            self._plots.append(
                self._ax.plot([], [], color=color, alpha=alpha, label=label)[0]
            )
        self._ax.set_xlim(0, self._time_window)
        self._ax.set_ylim(0, 1)
        self._ax.legend(loc='upper left', bbox_to_anchor=(0, 1.15))

        self._init = True
Exemplo n.º 59
0
def plot_contour_2d(xi, yi, zi, x=None, y=None, var=None, norm=False, figsize=None):
    if x is None:
        x = []
    if y is None:
        y = []

    if figsize is None:
        figsize = (w, golden_mean * w)

    fig = plt.figure(figsize=figsize, facecolor='white')

    ax = fig.add_subplot(1, 1, 1)
    xig, yig = np.meshgrid(xi, yi)
    x_min, y_min = map(np.nanmin, (xi, yi))
    x_max, y_max = map(np.nanmax, (xi, yi))
    ax.set_ylim([y_min, y_max])
    ax.set_xlim([x_min, x_max])
    ax.set_xlabel("Packet Emission Rate (pps)")
    ax.set_ylabel("Average Node Separation (m)")

    if norm:
        vmin, vmax = 0.0, 1.0
    else:
        vmin = np.nanmin(abs(zi))
        vmax = np.nanmax(abs(zi))

    cset = ax.contourf(zi, alpha=0.75,  # hatches=['+','x','-', '/', '\\', '//'],
                       cmap=plt.get_cmap('hot_r'),
                       vmin=vmin, vmax=vmax,
                       extent=[x_min, x_max, y_min, y_max]
                       )
    cbar = fig.colorbar(cset)
    if var is not None:
        # ax.set_title("{} with varying Packet Emission and Node Separations".format(var))
        cbar.set_label(var)

    if len(x) and len(y):
        ax.scatter(x, y, color='k', marker='.', s=1)

    # ax.clabel(cset,inline=1)
    return fig
Exemplo n.º 60
0
def plot_field_2D(file,out=None,filter=lambda d:d,cmap_func=lambda min,max: plt.get_cmap('jet'),opts={}):
	if out==None: out=os.path.dirname(file)
	LOG.debug('Plotting file %s to %s',file,out)
	# Open the hdf5 data
	h5file=h5py.File(file,'r')
	try:
		field=h5file.attrs['field']
		# Get the 2D data, timesteps, x and z
		dset=h5file['/data']
		dmax=dset.attrs['max']
		dmin=dset.attrs['min']
		cmap=cmap_func(dmin,dmax)
		frames=h5file['/frame']
		path, ext = os.path.splitext(file) # get the prefix_fieldname
		# extent=(left,right,bottom,top)
		x=h5file['x'].value
		z=h5file['z'].value
		extent=(0,(x[0]+x[-1])/1e3,0,(z[0]+z[-1])/1e3)
		figname=os.path.join(out,os.path.basename(path)+'%05d.png')
		plot_frames_2D(frames,dset.value[:,:,0,:],figname,mm=(dmin,dmax),title=field,filter=filter,cmap=cmap,extent=extent)
	finally:
		h5file.close()