Exemplo n.º 1
0
def get_surface_channel_gamma(path,
                              start=2.,
                              end=10.,
                              sampling_rate=2500,
                              plot=False):
    mm = np.memmap(path, dtype=np.int16, mode='r')
    num_channels = get_channel_count(os.path.dirname(path))
    chunk = get_chunk(mm, start, end, num_channels, sampling_rate)

    gm = []
    good_channels = []
    for ch in range(np.shape(chunk)[0]):
        if ch not in skip_channels:
            f, pXX = welch_power(chunk[ch, :], start=2, window=8)
            gm.extend([pXX[np.where(f > 40.)[0][0]]])
            good_channels.extend([ch])
    threshold = np.max(
        gm[::-1][:5]
    )  #assumes the last 5 are out of the brain; uses the max gamma on these channels as the threshold
    surface_channel = good_channels[mlab.cross_from_above(
        gaussian_filter1d(gm, 0), threshold)[0]]

    if plot:
        plt.plot(good_channels, gaussian_filter1d(gm, 2))
        plt.gca().axhline(threshold, color='r')
    del mm
    return surface_channel
def get_surface_channel_freq(path,frequency_range=[1,5],start=2.,end=10.,sampling_rate=2500,filter_size=2,sigma=2.,plot=False,filter=False,probemap=None):
	mm = np.memmap(path, dtype=np.int16, mode='r')
	num_channels =  get_channel_count(os.path.dirname(path),from_channel_map=False)
	chunk = get_chunk(mm,start,end,num_channels,sampling_rate)
	if probemap is not None:
		chunk = chunk[probemap,:]
	gm = []
	good_channels = []
	for ch in range(np.shape(chunk)[0]):
		if ch not in skip_channels:
			if filter:
				data = filtr(chunk[ch,:],0.1,300,sampling_rate,3)
			else:
				data = chunk[ch,:]
			f,pXX = welch_power(chunk[ch,:],start=2,window=8)
			gm.extend([np.mean(pXX[np.where((f>frequency_range[0])&(f<frequency_range[1]))[0]])])
			good_channels.extend([ch])
	#threshold = np.mean(gm[::-1][:5])	#assumes the last 5 are out of the brain; uses the max gamma on these channels as the threshold
	threshold = np.mean(gaussian_filter1d(gm,filter_size)[::-1][:5])+np.std(gaussian_filter1d(gm,filter_size)[::-1][:5])*sigma

	if plot:
		plt.plot(good_channels,gaussian_filter1d(gm,filter_size))
		plt.gca().axhline(threshold,color='r')
		plt.xlabel('channel number')
		plt.ylabel('power in '+str(frequency_range[0])+' to '+str(frequency_range[1])+' band')
	try:
		surface_channel = good_channels[mlab.cross_from_above(gaussian_filter1d(gm,filter_size),threshold)[-1]]
		return surface_channel
	except:
		return None
	del mm
	return surface_channel
Exemplo n.º 3
0
def get_surface_channel_spikeband(path,
                                  start=2.,
                                  end=10.,
                                  sampling_rate=30000,
                                  plot=False,
                                  filter_size=2,
                                  sigma=1.,
                                  filter=False,
                                  probemap=None):
    mm = np.memmap(path, dtype=np.int16, mode='r')
    print(os.path.dirname(path))
    num_channels = get_channel_count(os.path.dirname(path),
                                     from_channel_map=False)
    print(num_channels)
    chunk = get_chunk(mm, start, end, num_channels, sampling_rate)

    if probemap is not None:
        chunk = chunk[probemap, :]
        plt.imshow(chunk[:, :30000])
        plt.gca().set_aspect(100)
        plt.figure()

    rms = []
    good_channels = []
    for ch in range(np.shape(chunk)[0]):
        if ch not in skip_channels:
            if filter:
                data = filtr(chunk[ch, :], 300, 6000, sampling_rate, 3)
            else:
                data = chunk[ch, :]
            rms.extend([RMS(data)])
            good_channels.extend([ch])

    threshold = np.mean(gaussian_filter1d(rms, filter_size)[::-1][:5]) + np.std(
        gaussian_filter1d(rms, filter_size)[::-1][:5]
    ) * sigma  #assumes the last 5 are out of the brain; uses the mean + sd of these 5 as the threshold for pial surface

    # print(np.where(np.array(rms)<8.))
    # print(good_channels[np.where(np.array(rms)<8.)[0].astype(int)])
    if plot:
        plt.plot(good_channels, gaussian_filter1d(rms, filter_size))
        plt.gca().axhline(threshold, color='r')
        plt.xlabel('channel number')
        plt.ylabel('spike band RMS')
        #print(np.where(np.array(rms)<6.))
    del mm
    try:
        surface_channel = good_channels[mlab.cross_from_above(
            gaussian_filter1d(rms, filter_size), threshold)[0]]
        return surface_channel
    except:
        return None