Exemplo n.º 1
0
    def _contour_args(self, args, kwargs):
        if self.filled:
            fn = 'contourf'
        else:
            fn = 'contour'
        tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
            *args, **kwargs)
        z = np.asarray(args[0])

        #identified potential area of code to fix add type check of nans and raise warning here maybe to fix
        if z.shape != tri.x.shape:
            raise ValueError('z array must have same length as triangulation x'
                             ' and y arrays')

        #attempt solution 1 presented by ianthomas23 in issue
        if len(z[np.isnan(z[:, :])]) != 0:
            raise ValueError('z array must have contain no nan values')

        if len(z[np.isinf(z[:, :])]) != 0:
            raise ValueError('z array must have contain no inf values')

        self.zmax = z.max()
        self.zmin = z.min()
        if self.logscale and self.zmin <= 0:
            raise ValueError('Cannot %s log of negative values.' % fn)
        self._contour_level_args(z, args[1:])
        return (tri, z)
Exemplo n.º 2
0
    def _contour_args(self, args, kwargs):
        if self.filled:
            fn = 'contourf'
        else:
            fn = 'contour'
        tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
            *args, **kwargs)
        z = np.ma.asarray(args[0])
        if z.shape != tri.x.shape:
            raise ValueError('z array must have same length as triangulation x'
                             ' and y arrays')

        # z values must be finite, only need to check points that are included
        # in the triangulation.
        z_check = z[np.unique(tri.get_masked_triangles())]
        if np.ma.is_masked(z_check):
            raise ValueError('z must not contain masked points within the '
                             'triangulation')
        if not np.isfinite(z_check).all():
            raise ValueError('z array must not contain non-finite values '
                             'within the triangulation')

        z = np.ma.masked_invalid(z, copy=False)
        self.zmax = float(z_check.max())
        self.zmin = float(z_check.min())
        if self.logscale and self.zmin <= 0:
            raise ValueError('Cannot %s log of negative values.' % fn)
        self._contour_level_args(z, args[1:])
        return (tri, z)
Exemplo n.º 3
0
    def plot_trisurf(self, *args, **kwargs):
        '''
        plot_trisurf(x, y, z,  **wrargs)
        plot_trisurf(x, y, z,  triangles = triangle,,,)
        plot_trisurf(tri, z,  **kwargs, cz = cz, cdata = cdata)


        '''
        from art3d_gl import poly_collection_3d_to_gl
        from matplotlib.tri.triangulation import Triangulation

        cz = kwargs.pop('cz', False)
        cdata = kwargs.pop('cdata', None)
        expanddata = kwargs.pop('expanddata', False)
        
        tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)
        if 'Z' in kwargs:
            z = np.asarray(kwargs.pop('Z'))
        else:
            z = np.asarray(args[0])
            # We do this so Z doesn't get passed as an arg to PolyCollection
            args = args[1:]

        triangles = tri.get_masked_triangles()
        X3D = tri.x
        Y3D = tri.y
        Z3D = z
        idxset = tri.get_masked_triangles()

        if expanddata:
            verts = np.dstack((X3D[idxset], 
                           Y3D[idxset],
                           Z3D[idxset]))
            if cz:
                if cdata is not None:
                    cdata = cdata[idxset]
                else:
                    cdata = Z3D[idxset]
                shade = kwargs.pop('shade', 'linear')
                if shade != 'linear':
                    cdata = np.mean(cdata, -1)
                kwargs['facecolordata'] = np.real(cdata)
                kwargs.pop('facecolor', None) # get rid of this keyword
            kwargs['cz'] = cz
            o =  self.plot_solid(verts, **kwargs)
            o._idxset = (None, None, idxset)   # this is used for phasor
        else:
            verts = np.vstack((X3D, Y3D, Z3D)).transpose()
            if cz:
                if cdata is not None:
                    cdata = cdata
                else:
                    cdata = Z3D
                kwargs['facecolordata'] = np.real(cdata)
                kwargs.pop('facecolor', None) # get rid of this keyword
            kwargs['cz'] = cz
            o =  self.plot_solid(verts, idxset, **kwargs)
            o._idxset = (None, None, None)   # this is used for phasor            
        return o
Exemplo n.º 4
0
    def plot_trisurf(self, *args, **kwargs):
        '''
        plot_trisurf(x, y, z,  **wrargs)
        plot_trisurf(x, y, z,  triangles = triangle,,,)
        plot_trisurf(tri, z,  **kwargs, cz = cz, cdata = cdata)


        '''
        from art3d_gl import poly_collection_3d_to_gl
        from matplotlib.tri.triangulation import Triangulation

        cz = kwargs.pop('cz', False)
        cdata = kwargs.pop('cdata', None)
        expanddata = kwargs.pop('expanddata', False)

        tri, args, kwargs = Triangulation.get_from_args_and_kwargs(
            *args, **kwargs)
        if 'Z' in kwargs:
            z = np.asarray(kwargs.pop('Z'))
        else:
            z = np.asarray(args[0])
            # We do this so Z doesn't get passed as an arg to PolyCollection
            args = args[1:]

        triangles = tri.get_masked_triangles()
        X3D = tri.x
        Y3D = tri.y
        Z3D = z
        idxset = tri.get_masked_triangles()

        if expanddata:
            verts = np.dstack((X3D[idxset], Y3D[idxset], Z3D[idxset]))
            if cz:
                if cdata is not None:
                    cdata = cdata[idxset]
                else:
                    cdata = Z3D[idxset]
                shade = kwargs.pop('shade', 'linear')
                if shade != 'linear':
                    cdata = np.mean(cdata, -1)
                kwargs['facecolordata'] = np.real(cdata)
                kwargs.pop('facecolor', None)  # get rid of this keyword
            kwargs['cz'] = cz
            o = self.plot_solid(verts, **kwargs)
            o._idxset = (None, None, idxset)  # this is used for phasor
        else:
            verts = np.vstack((X3D, Y3D, Z3D)).transpose()
            if cz:
                if cdata is not None:
                    cdata = cdata
                else:
                    cdata = Z3D
                kwargs['facecolordata'] = np.real(cdata)
                kwargs.pop('facecolor', None)  # get rid of this keyword
            kwargs['cz'] = cz
            o = self.plot_solid(verts, idxset, **kwargs)
            o._idxset = (None, None, None)  # this is used for phasor
        return o
Exemplo n.º 5
0
def meshDelaunay(settings, heights):
    '''
    Convert coordinates to mesh using Delaunay triangulation. Also returns
    colormap for writing the mesh in IDTF format, surface triangles from
    triangulation (as opposed to tetrahedra), and the top surface area of
    the mesh.
    '''
    # Get coordinates of all height points (omitting zeros)
    coordinates = np.where(heights != 0)
    x_3D = coordinates[0]
    y_3D = coordinates[1]

    # Generate 3D mesh from heights using meshgrid and griddata
    dx = (max(x_3D) - min(x_3D)) / settings['grid_size']
    dy = (max(y_3D) - min(y_3D)) / settings['grid_size']

    x_grid = np.linspace(min(x_3D), max(x_3D), max(dx, dy))
    y_grid = np.linspace(min(y_3D), max(y_3D), max(dx, dy))

    X, Y = np.meshgrid(x_grid, y_grid)
    z = np.array(
        [heights[x_3D[i], y_3D[i]] for i in range(len(coordinates[0]))])
    Z = griddata((x_3D, y_3D), z, (X, Y))

    # Convert NaNs to zeros and find non-zero coordinates
    Z[np.isnan(Z)] = 0
    nonZero = np.where(Z > 0)  # Indices of non-zero points
    # Subset X,Y, and Z to contain only non-zero points
    Z_nz = Z[nonZero[0], nonZero[1]]
    X_nz = np.array([X[0][xi] for xi in nonZero[0]])
    Y_nz = np.array([Y[:, 0][yi] for yi in nonZero[1]])

    xyz_points = np.column_stack((X_nz, Y_nz, Z_nz))
    triangulation = Delaunay(xyz_points)

    # Get surface triangles
    triang, args, kwargs = Triangulation.get_from_args_and_kwargs(
        X_nz, Y_nz, Z_nz, triangles=triangulation.simplices)
    triangles = triang.get_masked_triangles(
    )  # From matplotlib.tri.triangulation

    # Get color values for mesh triangle faces
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    surf = ax.plot_trisurf(X_nz,
                           Y_nz,
                           Z_nz,
                           triangles=triangles,
                           cmap=plt.cm.viridis)
    m = plt.cm.ScalarMappable(cmap=surf.cmap, norm=surf.norm)
    colors = m.to_rgba(Z_nz)

    return z, triangulation, triangles, colors
Exemplo n.º 6
0
 def _contour_args(self, args, kwargs):
     if self.filled: fn = 'contourf'
     else: fn = 'contour'
     tri, args, kwargs = \
         Triangulation.get_from_args_and_kwargs(*args, **kwargs)
     z = np.asarray(args[0])
     if z.shape != tri.x.shape:
         raise ValueError('z array must have same length as triangulation x'
                          'and y arrays')
     self.zmax = z.max()
     self.zmin = z.min()
     if self.logscale and self.zmin <= 0:
         raise ValueError('Cannot %s log of negative values.' % fn)
     self._contour_level_args(z, args[1:])
     return (tri, z)
Exemplo n.º 7
0
 def _contour_args(self, args, kwargs):
     if self.filled: fn = 'contourf'
     else:           fn = 'contour'
     tri, args, kwargs = \
         Triangulation.get_from_args_and_kwargs(*args, **kwargs)
     z = np.asarray(args[0])
     if z.shape != tri.x.shape:
         raise ValueError('z array must have same length as triangulation x'
                          'and y arrays')
     self.zmax = z.max()
     self.zmin = z.min()
     if self.logscale and self.zmin <= 0:
         raise ValueError('Cannot %s log of negative values.' % fn)
     self._contour_level_args(z, args[1:])
     return (tri, z)
Exemplo n.º 8
0
def meshDelaunay(settings,heights):
    '''
    Convert coordinates to mesh using Delaunay triangulation. Also returns
    colormap for writing the mesh in IDTF format, surface triangles from
    triangulation (as opposed to tetrahedra), and the top surface area of
    the mesh.
    '''
    # Get coordinates of all height points (omitting zeros)
    coordinates = np.where(heights != 0)
    x_3D = coordinates[0]
    y_3D = coordinates[1]

    # Generate 3D mesh from heights using meshgrid and griddata
    dx = (max(x_3D) - min(x_3D)) / settings['grid_size']
    dy = (max(y_3D) - min(y_3D)) / settings['grid_size']

    x_grid = np.linspace(min(x_3D),max(x_3D),max(dx,dy))
    y_grid = np.linspace(min(y_3D),max(y_3D),max(dx,dy))

    X,Y = np.meshgrid(x_grid,y_grid)
    z = np.array([heights[x_3D[i],y_3D[i]] for i in range(len(coordinates[0]))])
    Z = griddata((x_3D,y_3D),z,(X,Y))

    # Convert NaNs to zeros and find non-zero coordinates
    Z[np.isnan(Z)] = 0
    nonZero = np.where(Z > 0) # Indices of non-zero points
    # Subset X,Y, and Z to contain only non-zero points
    Z_nz = Z[nonZero[0],nonZero[1]]
    X_nz= np.array([X[0][xi] for xi in nonZero[0]])
    Y_nz = np.array([Y[:,0][yi] for yi in nonZero[1]])

    xyz_points = np.column_stack((X_nz,Y_nz,Z_nz))
    triangulation = Delaunay(xyz_points)

    # Get surface triangles
    triang,args,kwargs = Triangulation.get_from_args_and_kwargs(X_nz,Y_nz,Z_nz,triangles=triangulation.simplices)
    triangles = triang.get_masked_triangles() # From matplotlib.tri.triangulation

    # Get color values for mesh triangle faces
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    surf = ax.plot_trisurf(X_nz,Y_nz,Z_nz,triangles=triangles,cmap=plt.cm.viridis)
    m = plt.cm.ScalarMappable(cmap=surf.cmap,norm=surf.norm)
    colors = m.to_rgba(Z_nz)

    return z,triangulation,triangles,colors
Exemplo n.º 9
0
def triplot(ax, *args, **kwargs):
    """
    Draw a unstructured triangular grid as lines and/or markers to
    the :class:`~matplotlib.axes.Axes`.
    The triangulation to plot can be specified in one of two ways;
    either::
      triplot(triangulation, ...)
    where triangulation is a :class:`~matplotlib.tri.Triangulation`
    object, or
    ::
      triplot(x, y, ...)
      triplot(x, y, triangles, ...)
      triplot(x, y, triangles=triangles, ...)
      triplot(x, y, mask, ...)
      triplot(x, y, mask=mask, ...)
      triplot(x, y, triangles, mask, ...)
      triplot(x, y, triangles, mask=mask, ...)
    in which case a Triangulation object will be created.  See
    :class:`~matplotlib.tri.Triangulation` for a explanation of these
    possibilities.
    The remaining args and kwargs are the same as for
    :meth:`~matplotlib.axes.Axes.plot`.
    **Example:**
        .. plot:: mpl_examples/pylab_examples/triplot_demo.py
    """
    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)
    x = tri.x
    y = tri.y
    edges = tri.edges
    marker = kwargs.pop('marker', None)
    kwargs['marker'] = ''
    ax.plot(x[edges].T, y[edges].T, *args, **kwargs)
    if marker is None:
        kwargs.pop('marker')
    else:
        kwargs['marker'] = marker
    kwargs['linestyle'] = ''
    ax.plot(x, y, *args, **kwargs)
Exemplo n.º 10
0
def triplot(ax, *args, **kwargs):
    """
    Draw a unstructured triangular grid as lines and/or markers.

    The triangulation to plot can be specified in one of two ways;
    either::

      triplot(triangulation, ...)

    where triangulation is a :class:`matplotlib.tri.Triangulation`
    object, or

    ::

      triplot(x, y, ...)
      triplot(x, y, triangles, ...)
      triplot(x, y, triangles=triangles, ...)
      triplot(x, y, mask=mask, ...)
      triplot(x, y, triangles, mask=mask, ...)

    in which case a Triangulation object will be created.  See
    :class:`~matplotlib.tri.Triangulation` for a explanation of these
    possibilities.

    The remaining args and kwargs are the same as for
    :meth:`~matplotlib.axes.Axes.plot`.

    **Example:**

        .. plot:: mpl_examples/pylab_examples/triplot_demo.py
    """
    import matplotlib.axes

    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)

    x = tri.x
    y = tri.y
    edges = tri.edges

    # If draw both lines and markers at the same time, e.g.
    #     ax.plot(x[edges].T, y[edges].T, *args, **kwargs)
    # then the markers are drawn more than once which is incorrect if alpha<1.
    # Hence draw lines and markers separately.

    # Decode plot format string, e.g., 'ro-'
    fmt = ""
    if len(args) > 0:
        fmt = args[0]
    linestyle, marker, color = matplotlib.axes._process_plot_format(fmt)

    # Draw lines without markers, if lines are required.
    if linestyle is not None and linestyle is not "None":
        kw = kwargs.copy()
        kw.pop("marker", None)  # Ignore marker if set.
        kw["linestyle"] = ls_mapper[linestyle]
        kw["edgecolor"] = color
        kw["facecolor"] = None

        vertices = np.column_stack((x[edges].flatten(), y[edges].flatten()))
        codes = ([Path.MOVETO] + [Path.LINETO]) * len(edges)

        path = Path(vertices, codes)
        pathpatch = PathPatch(path, **kw)

        ax.add_patch(pathpatch)

    # Draw markers without lines.
    # Should avoid drawing markers for points that are not in any triangle?
    kwargs["linestyle"] = ""
    ax.plot(x, y, *args, **kwargs)
Exemplo n.º 11
0
def triplot(ax, *args, **kwargs):
    """
    Draw a unstructured triangular grid as lines and/or markers to
    the :class:`~matplotlib.axes.Axes`.

    The triangulation to plot can be specified in one of two ways;
    either::

      triplot(triangulation, ...)

    where triangulation is a :class:`~matplotlib.tri.Triangulation`
    object, or

    ::

      triplot(x, y, ...)
      triplot(x, y, triangles, ...)
      triplot(x, y, triangles=triangles, ...)
      triplot(x, y, mask=mask, ...)
      triplot(x, y, triangles, mask=mask, ...)

    in which case a Triangulation object will be created.  See
    :class:`~matplotlib.tri.Triangulation` for a explanation of these
    possibilities.

    The remaining args and kwargs are the same as for
    :meth:`~matplotlib.axes.Axes.plot`.

    **Example:**

        .. plot:: mpl_examples/pylab_examples/triplot_demo.py
    """
    import matplotlib.axes
    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)

    x = tri.x
    y = tri.y
    edges = tri.edges

    # If draw both lines and markers at the same time, e.g.
    #     ax.plot(x[edges].T, y[edges].T, *args, **kwargs)
    # then the markers are drawn more than once which is incorrect if alpha<1.
    # Hence draw lines and markers separately.

    # Decode plot format string, e.g. 'ro-'
    fmt = ''
    if len(args) > 0:
        fmt = args[0]

#   _process_plot_format moves around so I made copy here.
#   not a best solution...;D
#    linestyle, marker, color = matplotlib.axes._process_plot_format(fmt)
    linestyle, marker, color = _process_plot_format(fmt)

    # Draw lines without markers, if lines are required.
    a = []
    if linestyle is not None and linestyle is not 'None':
        kw = kwargs.copy()
        kw.pop('marker', None)     # Ignore marker if set.
        kw['linestyle'] = ls_mapper[linestyle]
        kw['edgecolor'] = color
        kw['facecolor'] = None

        vertices = np.column_stack((x[edges].flatten(), y[edges].flatten()))
        codes = ([Path.MOVETO] + [Path.LINETO])*len(edges)

        path = Path(vertices, codes)
        pathpatch = PathPatch(path, **kw)

        ax.add_patch(pathpatch)
        a.append(pathpatch)

    # Draw markers without lines.
    # Should avoid drawing markers for points that are not in any triangle?
    kwargs['linestyle'] = ''

    # without hiding points explicitly, marker would expose hidden points. 
    idx = np.unique(edges.flatten())
    l = ax.plot(x[idx], y[idx], *args, **kwargs)
    a = l+a
    return a
Exemplo n.º 12
0
def tripcolor_costum(
    ax,
    *args,
    alpha=1.0,
    override_cmap_alpha=True,
    norm=None,
    cmap=None,
    vmin=None,
    vmax=None,
    shading="flat",
    facecolors=None,
    **kwargs,
):
    """
    Create a pseudocolor plot of an unstructured triangular grid.

    The triangulation can be specified in one of two ways; either::

      tripcolor(triangulation, ...)

    where triangulation is a :class:`matplotlib.tri.Triangulation`
    object, or

    ::

      tripcolor(x, y, ...)
      tripcolor(x, y, triangles, ...)
      tripcolor(x, y, triangles=triangles, ...)
      tripcolor(x, y, mask=mask, ...)
      tripcolor(x, y, triangles, mask=mask, ...)

    in which case a Triangulation object will be created.  See
    :class:`~matplotlib.tri.Triangulation` for a explanation of these
    possibilities.

    The next argument must be *C*, the array of color values, either
    one per point in the triangulation if color values are defined at
    points, or one per triangle in the triangulation if color values
    are defined at triangles. If there are the same number of points
    and triangles in the triangulation it is assumed that color
    values are defined at points; to force the use of color values at
    triangles use the kwarg ``facecolors=C`` instead of just ``C``.

    *shading* may be 'flat' (the default) or 'gouraud'. If *shading*
    is 'flat' and C values are defined at points, the color values
    used for each triangle are from the mean C of the triangle's
    three points. If *shading* is 'gouraud' then color values must be
    defined at points.

    The remaining kwargs are the same as for
    :meth:`~matplotlib.axes.Axes.pcolor`.
    """
    cbook._check_in_list(["flat", "gouraud"], shading=shading)

    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)

    # C is the colors array defined at either points or faces (i.e. triangles).
    # If facecolors is None, C are defined at points.
    # If facecolors is not None, C are defined at faces.
    if facecolors is not None:
        C = facecolors
    else:
        C = np.asarray(args[0])

    # If there are a different number of points and triangles in the
    # triangulation, can omit facecolors kwarg as it is obvious from
    # length of C whether it refers to points or faces.
    # Do not do this for gouraud shading.
    if (facecolors is None and len(C) == len(tri.triangles)
            and len(C) != len(tri.x) and shading != "gouraud"):
        facecolors = C

    # Check length of C is OK.
    if (facecolors is None
            and len(C) != len(tri.x)) or (facecolors is not None
                                          and len(C) != len(tri.triangles)):
        raise ValueError("Length of color values array must be the same "
                         "as either the number of triangulation points "
                         "or triangles")

    # Handling of linewidths, shading, edgecolors and antialiased as
    # in Axes.pcolor
    linewidths = (0.25, )
    if "linewidth" in kwargs:
        kwargs["linewidths"] = kwargs.pop("linewidth")
    kwargs.setdefault("linewidths", linewidths)

    edgecolors = "none"
    if "edgecolor" in kwargs:
        kwargs["edgecolors"] = kwargs.pop("edgecolor")
    ec = kwargs.setdefault("edgecolors", edgecolors)

    if "antialiased" in kwargs:
        kwargs["antialiaseds"] = kwargs.pop("antialiased")
    if "antialiaseds" not in kwargs and ec.lower() == "none":
        kwargs["antialiaseds"] = False

    if shading == "gouraud":
        if facecolors is not None:
            raise ValueError("Gouraud shading does not support the use "
                             "of facecolors kwarg")
        if len(C) != len(tri.x):
            raise ValueError("For gouraud shading, the length of color "
                             "values array must be the same as the "
                             "number of triangulation points")
        collection = CustomTriMesh(tri, **kwargs)
    else:
        # Vertices of triangles.
        maskedTris = tri.get_masked_triangles()
        verts = np.stack((tri.x[maskedTris], tri.y[maskedTris]), axis=-1)

        # Color values.
        if facecolors is None:
            # One color per triangle, the mean of the 3 vertex color values.
            C = C[maskedTris].mean(axis=1)
        elif tri.mask is not None:
            # Remove color values of masked triangles.
            C = C[~tri.mask]
        collection = CustomPolyCollection(verts, **kwargs)

    collection.set_alpha(alpha)
    collection.set_override_cmap_alpha(override_cmap_alpha)
    collection.set_array(C)
    if norm is not None and not isinstance(norm, Normalize):
        raise ValueError("'norm' must be an instance of 'Normalize'")
    collection.set_cmap(cmap)
    collection.set_norm(norm)
    if vmin is not None or vmax is not None:
        collection.set_clim(vmin, vmax)
    else:
        collection.autoscale_None()
    ax.grid(False)

    minx = tri.x.min()
    maxx = tri.x.max()
    miny = tri.y.min()
    maxy = tri.y.max()
    corners = (minx, miny), (maxx, maxy)
    ax.update_datalim(corners)
    ax.autoscale_view()
    ax.add_collection(collection)
    return ax, collection
Exemplo n.º 13
0
def tripcolor(ax, *args, **kwargs):
    """
    Create a pseudocolor plot of an unstructured triangular grid to
    the :class:`~matplotlib.axes.Axes`.

    The triangulation can be specified in one of two ways; either::

      tripcolor(triangulation, ...)

    where triangulation is a :class:`~matplotlib.tri.Triangulation`
    object, or

    ::

      tripcolor(x, y, ...)
      tripcolor(x, y, triangles, ...)
      tripcolor(x, y, triangles=triangles, ...)
      tripcolor(x, y, mask=mask, ...)
      tripcolor(x, y, triangles, mask=mask, ...)

    in which case a Triangulation object will be created.  See
    :class:`~matplotlib.tri.Triangulation` for a explanation of these
    possibilities.

    The next argument must be *C*, the array of color values, one per
    point in the triangulation.

    *shading* may be 'flat', 'faceted' or 'gouraud'. If *shading* is
    'flat' or 'faceted', the colors used for each triangle are from
    the mean C of the triangle's three points.

    The remaining kwargs are the same as for
    :meth:`~matplotlib.axes.Axes.pcolor`.

    **Example:**

        .. plot:: mpl_examples/pylab_examples/tripcolor_demo.py
    """
    if not ax._hold: ax.cla()

    alpha = kwargs.pop('alpha', 1.0)
    norm = kwargs.pop('norm', None)
    cmap = kwargs.pop('cmap', None)
    vmin = kwargs.pop('vmin', None)
    vmax = kwargs.pop('vmax', None)
    shading = kwargs.pop('shading', 'flat')

    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)
    x = tri.x
    y = tri.y
    triangles = tri.get_masked_triangles()

    C = np.asarray(args[0])
    if C.shape != x.shape:
        raise ValueError('C array must have same length as triangulation x and'
                         ' y arrays')

    if shading == 'gouraud':
        collection = TriMesh(tri, **kwargs)
    else:
        if shading == 'faceted':
            edgecolors = (0,0,0,1),
            linewidths = (0.25,)
        else:
            edgecolors = 'face'
            linewidths = (1.0,)
        kwargs.setdefault('edgecolors', edgecolors)
        kwargs.setdefault('antialiaseds', (0,))
        kwargs.setdefault('linewidths', linewidths)

        # Vertices of triangles.
        verts = np.concatenate((x[triangles][...,np.newaxis],
                                y[triangles][...,np.newaxis]), axis=2)
        # Color values, one per triangle, mean of the 3 vertex color values.
        C = C[triangles].mean(axis=1)
        collection = PolyCollection(verts, **kwargs)

    collection.set_alpha(alpha)
    collection.set_array(C)
    if norm is not None: assert(isinstance(norm, Normalize))
    collection.set_cmap(cmap)
    collection.set_norm(norm)
    if vmin is not None or vmax is not None:
        collection.set_clim(vmin, vmax)
    else:
        collection.autoscale_None()
    ax.grid(False)

    minx = tri.x.min()
    maxx = tri.x.max()
    miny = tri.y.min()
    maxy = tri.y.max()
    corners = (minx, miny), (maxx, maxy)
    ax.update_datalim( corners)
    ax.autoscale_view()
    ax.add_collection(collection)
    return collection
Exemplo n.º 14
0
def triplot(ax, *args, **kwargs):
    """
    Draw a unstructured triangular grid as lines and/or markers.

    The triangulation to plot can be specified in one of two ways;
    either::

      triplot(triangulation, ...)

    where triangulation is a :class:`~matplotlib.tri.Triangulation`
    object, or

    ::

      triplot(x, y, ...)
      triplot(x, y, triangles, ...)
      triplot(x, y, triangles=triangles, ...)
      triplot(x, y, mask=mask, ...)
      triplot(x, y, triangles, mask=mask, ...)

    in which case a Triangulation object will be created.  See
    :class:`~matplotlib.tri.Triangulation` for a explanation of these
    possibilities.

    The remaining args and kwargs are the same as for
    :meth:`~matplotlib.axes.Axes.plot`.

    **Example:**

        .. plot:: mpl_examples/pylab_examples/triplot_demo.py
    """
    import matplotlib.axes

    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)

    x = tri.x
    y = tri.y
    edges = tri.edges

    # If draw both lines and markers at the same time, e.g.
    #     ax.plot(x[edges].T, y[edges].T, *args, **kwargs)
    # then the markers are drawn more than once which is incorrect if alpha<1.
    # Hence draw lines and markers separately.

    # Decode plot format string, e.g. 'ro-'
    fmt = ''
    if len(args) > 0:
        fmt = args[0]
    linestyle, marker, color = matplotlib.axes._process_plot_format(fmt)

    # Draw lines without markers, if lines are required.
    if linestyle is not None and linestyle is not 'None':
        kw = kwargs.copy()
        kw.pop('marker', None)  # Ignore marker if set.
        kw['linestyle'] = ls_mapper[linestyle]
        kw['edgecolor'] = color
        kw['facecolor'] = None

        vertices = np.column_stack((x[edges].flatten(), y[edges].flatten()))
        codes = ([Path.MOVETO] + [Path.LINETO]) * len(edges)

        path = Path(vertices, codes)
        pathpatch = PathPatch(path, **kw)

        ax.add_patch(pathpatch)

    # Draw markers without lines.
    # Should avoid drawing markers for points that are not in any triangle?
    kwargs['linestyle'] = ''
    ax.plot(x, y, *args, **kwargs)
Exemplo n.º 15
0
def tripcolor(ax, *args, **kwargs):
    """
    Create a pseudocolor plot of an unstructured triangular grid.

    The triangulation can be specified in one of two ways; either::

      tripcolor(triangulation, ...)

    where triangulation is a :class:`matplotlib.tri.Triangulation`
    object, or

    ::

      tripcolor(x, y, ...)
      tripcolor(x, y, triangles, ...)
      tripcolor(x, y, triangles=triangles, ...)
      tripcolor(x, y, mask=mask, ...)
      tripcolor(x, y, triangles, mask=mask, ...)

    in which case a Triangulation object will be created.  See
    :class:`~matplotlib.tri.Triangulation` for a explanation of these
    possibilities.

    The next argument must be *C*, the array of color values, either
    one per point in the triangulation if color values are defined at
    points, or one per triangle in the triangulation if color values
    are defined at triangles. If there are the same number of points
    and triangles in the triangulation it is assumed that color
    values are defined at points; to force the use of color values at
    triangles use the kwarg *facecolors*=C instead of just *C*.

    *shading* may be 'flat' (the default) or 'gouraud'. If *shading*
    is 'flat' and C values are defined at points, the color values
    used for each triangle are from the mean C of the triangle's
    three points. If *shading* is 'gouraud' then color values must be
    defined at points.

    The remaining kwargs are the same as for
    :meth:`~matplotlib.axes.Axes.pcolor`.

    **Example:**

        .. plot:: mpl_examples/pylab_examples/tripcolor_demo.py
    """
    if not ax._hold:
        ax.cla()

    alpha = kwargs.pop('alpha', 1.0)
    norm = kwargs.pop('norm', None)
    cmap = kwargs.pop('cmap', None)
    vmin = kwargs.pop('vmin', None)
    vmax = kwargs.pop('vmax', None)
    shading = kwargs.pop('shading', 'flat')
    facecolors = kwargs.pop('facecolors', None)

    if shading not in ['flat', 'gouraud']:
        raise ValueError("shading must be one of ['flat', 'gouraud'] "
                         "not {0}".format(shading))

    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)

    # C is the colors array defined at either points or faces (i.e. triangles).
    # If facecolors is None, C are defined at points.
    # If facecolors is not None, C are defined at faces.
    if facecolors is not None:
        C = facecolors
    else:
        C = np.asarray(args[0])

    # If there are a different number of points and triangles in the
    # triangulation, can omit facecolors kwarg as it is obvious from
    # length of C whether it refers to points or faces.
    # Do not do this for gouraud shading.
    if (facecolors is None and len(C) == len(tri.triangles) and
            len(C) != len(tri.x) and shading != 'gouraud'):
        facecolors = C

    # Check length of C is OK.
    if ((facecolors is None and len(C) != len(tri.x)) or
            (facecolors is not None and len(C) != len(tri.triangles))):
        raise ValueError('Length of color values array must be the same '
                         'as either the number of triangulation points '
                         'or triangles')

    # Handling of linewidths, shading, edgecolors and antialiased as
    # in Axes.pcolor
    linewidths = (0.25,)
    if 'linewidth' in kwargs:
        kwargs['linewidths'] = kwargs.pop('linewidth')
    kwargs.setdefault('linewidths', linewidths)

    edgecolors = 'none'
    if 'edgecolor' in kwargs:
        kwargs['edgecolors'] = kwargs.pop('edgecolor')
    ec = kwargs.setdefault('edgecolors', edgecolors)

    if 'antialiased' in kwargs:
        kwargs['antialiaseds'] = kwargs.pop('antialiased')
    if 'antialiaseds' not in kwargs and ec.lower() == "none":
        kwargs['antialiaseds'] = False

    if shading == 'gouraud':
        if facecolors is not None:
            raise ValueError('Gouraud shading does not support the use '
                             'of facecolors kwarg')
        if len(C) != len(tri.x):
            raise ValueError('For gouraud shading, the length of color '
                             'values array must be the same as the '
                             'number of triangulation points')
        collection = TriMesh(tri, **kwargs)
    else:
        # Vertices of triangles.
        maskedTris = tri.get_masked_triangles()
        verts = np.concatenate((tri.x[maskedTris][..., np.newaxis],
                                tri.y[maskedTris][..., np.newaxis]), axis=2)

        # Color values.
        if facecolors is None:
            # One color per triangle, the mean of the 3 vertex color values.
            C = C[maskedTris].mean(axis=1)
        elif tri.mask is not None:
            # Remove color values of masked triangles.
            C = C.compress(1-tri.mask)

        collection = PolyCollection(verts, **kwargs)

    collection.set_alpha(alpha)
    collection.set_array(C)
    if norm is not None:
        if not isinstance(norm, Normalize):
            msg = "'norm' must be an instance of 'Normalize'"
            raise ValueError(msg)
    collection.set_cmap(cmap)
    collection.set_norm(norm)
    if vmin is not None or vmax is not None:
        collection.set_clim(vmin, vmax)
    else:
        collection.autoscale_None()
    ax.grid(False)

    minx = tri.x.min()
    maxx = tri.x.max()
    miny = tri.y.min()
    maxy = tri.y.max()
    corners = (minx, miny), (maxx, maxy)
    ax.update_datalim(corners)
    ax.autoscale_view()
    ax.add_collection(collection)
    return collection
Exemplo n.º 16
0
def triplot(ax, *args, **kwargs):
    """
    Draw a unstructured triangular grid as lines and/or markers.

    The triangulation to plot can be specified in one of two ways; either::

      triplot(triangulation, ...)

    where triangulation is a `.Triangulation` object, or

    ::

      triplot(x, y, ...)
      triplot(x, y, triangles, ...)
      triplot(x, y, triangles=triangles, ...)
      triplot(x, y, mask=mask, ...)
      triplot(x, y, triangles, mask=mask, ...)

    in which case a Triangulation object will be created.  See `.Triangulation`
    for a explanation of these possibilities.

    The remaining args and kwargs are the same as for `~.Axes.plot`.

    Returns
    -------
    lines : `~matplotlib.lines.Line2D`
        The drawn triangles edges.
    markers : `~matplotlib.lines.Line2D`
        The drawn marker nodes.
    """
    import matplotlib.axes

    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)
    x, y, edges = (tri.x, tri.y, tri.edges)

    # Decode plot format string, e.g., 'ro-'
    fmt = args[0] if args else ""
    linestyle, marker, color = matplotlib.axes._base._process_plot_format(fmt)

    # Insert plot format string into a copy of kwargs (kwargs values prevail).
    kw = cbook.normalize_kwargs(kwargs, mlines.Line2D)
    for key, val in zip(('linestyle', 'marker', 'color'),
                        (linestyle, marker, color)):
        if val is not None:
            kw.setdefault(key, val)

    # Draw lines without markers.
    # Note 1: If we drew markers here, most markers would be drawn more than
    #         once as they belong to several edges.
    # Note 2: We insert nan values in the flattened edges arrays rather than
    #         plotting directly (triang.x[edges].T, triang.y[edges].T)
    #         as it considerably speeds-up code execution.
    linestyle = kw['linestyle']
    kw_lines = {
        **kw,
        'marker': 'None',  # No marker to draw.
        'zorder': kw.get('zorder', 1),  # Path default zorder is used.
    }
    if linestyle not in [None, 'None', '', ' ']:
        tri_lines_x = np.insert(x[edges], 2, np.nan, axis=1)
        tri_lines_y = np.insert(y[edges], 2, np.nan, axis=1)
        tri_lines = ax.plot(tri_lines_x.ravel(), tri_lines_y.ravel(),
                            **kw_lines)
    else:
        tri_lines = ax.plot([], [], **kw_lines)

    # Draw markers separately.
    marker = kw['marker']
    kw_markers = {
        **kw,
        'linestyle': 'None',  # No line to draw.
    }
    if marker not in [None, 'None', '', ' ']:
        tri_markers = ax.plot(x, y, **kw_markers)
    else:
        tri_markers = ax.plot([], [], **kw_markers)

    return tri_lines + tri_markers
Exemplo n.º 17
0
def triplot(ax, *args, **kwargs):
    """
    Draw a unstructured triangular grid as lines and/or markers.

    The triangulation to plot can be specified in one of two ways;
    either::

      triplot(triangulation, ...)

    where triangulation is a :class:`matplotlib.tri.Triangulation`
    object, or

    ::

      triplot(x, y, ...)
      triplot(x, y, triangles, ...)
      triplot(x, y, triangles=triangles, ...)
      triplot(x, y, mask=mask, ...)
      triplot(x, y, triangles, mask=mask, ...)

    in which case a Triangulation object will be created.  See
    :class:`~matplotlib.tri.Triangulation` for a explanation of these
    possibilities.

    The remaining args and kwargs are the same as for
    :meth:`~matplotlib.axes.Axes.plot`.

    Return a list of 2 :class:`~matplotlib.lines.Line2D` containing
    respectively:

        - the lines plotted for triangles edges
        - the markers plotted for triangles nodes

    **Example:**

        .. plot:: mpl_examples/pylab_examples/triplot_demo.py
    """
    import matplotlib.axes

    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)
    x, y, edges = (tri.x, tri.y, tri.edges)

    # Decode plot format string, e.g., 'ro-'
    fmt = ""
    if len(args) > 0:
        fmt = args[0]
    linestyle, marker, color = matplotlib.axes._base._process_plot_format(fmt)

    # Insert plot format string into a copy of kwargs (kwargs values prevail).
    kw = kwargs.copy()
    for key, val in zip(('linestyle', 'marker', 'color'),
                        (linestyle, marker, color)):
        if val is not None:
            kw[key] = kwargs.get(key, val)

    # Draw lines without markers.
    # Note 1: If we drew markers here, most markers would be drawn more than
    #         once as they belong to several edges.
    # Note 2: We insert nan values in the flattened edges arrays rather than
    #         plotting directly (triang.x[edges].T, triang.y[edges].T)
    #         as it considerably speeds-up code execution.
    linestyle = kw['linestyle']
    kw_lines = kw.copy()
    kw_lines['marker'] = 'None'  # No marker to draw.
    kw_lines['zorder'] = kw.get('zorder', 1)  # Path default zorder is used.
    if (linestyle is not None) and (linestyle not in ['None', '', ' ']):
        tri_lines_x = np.insert(x[edges], 2, np.nan, axis=1)
        tri_lines_y = np.insert(y[edges], 2, np.nan, axis=1)
        tri_lines = ax.plot(tri_lines_x.ravel(), tri_lines_y.ravel(),
                            **kw_lines)
    else:
        tri_lines = ax.plot([], [], **kw_lines)

    # Draw markers separately.
    marker = kw['marker']
    kw_markers = kw.copy()
    kw_markers['linestyle'] = 'None'  # No line to draw.
    if (marker is not None) and (marker not in ['None', '', ' ']):
        tri_markers = ax.plot(x, y, **kw_markers)
    else:
        tri_markers = ax.plot([], [], **kw_markers)

    return tri_lines + tri_markers
Exemplo n.º 18
0
def tripcolor(ax, *args, **kwargs):
    """
    Create a pseudocolor plot of an unstructured triangular grid to
    the :class:`~matplotlib.axes.Axes`.

    The triangulation can be specified in one of two ways; either::

      tripcolor(triangulation, ...)

    where triangulation is a :class:`~matplotlib.tri.Triangulation`
    object, or

    ::

      tripcolor(x, y, ...)
      tripcolor(x, y, triangles, ...)
      tripcolor(x, y, triangles=triangles, ...)
      tripcolor(x, y, mask, ...)
      tripcolor(x, y, mask=mask, ...)
      tripcolor(x, y, triangles, mask, ...)
      tripcolor(x, y, triangles, mask=mask, ...)

    in which case a Triangulation object will be created.  See
    :class:`~matplotlib.tri.Triangulation` for a explanation of these
    possibilities.

    The next argument must be *C*, the array of color values, one per
    point in the triangulation.  The colors used for each triangle
    are from the mean C of the triangle's three points.

    The remaining kwargs are the same as for
    :meth:`~matplotlib.axes.Axes.pcolor`.

    **Example:**

        .. plot:: mpl_examples/pylab_examples/tripcolor_demo.py
    """
    if not ax._hold: ax.cla()

    alpha = kwargs.pop('alpha', 1.0)
    norm = kwargs.pop('norm', None)
    cmap = kwargs.pop('cmap', None)
    vmin = kwargs.pop('vmin', None)
    vmax = kwargs.pop('vmax', None)
    shading = kwargs.pop('shading', 'flat')

    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)
    x = tri.x
    y = tri.y
    triangles = tri.get_masked_triangles()

    # Vertices of triangles.
    verts = np.concatenate(
        (x[triangles][..., np.newaxis], y[triangles][..., np.newaxis]), axis=2)

    C = np.asarray(args[0])
    if C.shape != x.shape:
        raise ValueError('C array must have same length as triangulation x and'
                         ' y arrays')

    # Color values, one per triangle, mean of the 3 vertex color values.
    C = C[triangles].mean(axis=1)

    if shading == 'faceted':
        edgecolors = (0, 0, 0, 1),
        linewidths = (0.25, )
    else:
        edgecolors = 'face'
        linewidths = (1.0, )
    kwargs.setdefault('edgecolors', edgecolors)
    kwargs.setdefault('antialiaseds', (0, ))
    kwargs.setdefault('linewidths', linewidths)

    collection = PolyCollection(verts, **kwargs)

    collection.set_alpha(alpha)
    collection.set_array(C)
    if norm is not None: assert (isinstance(norm, Normalize))
    collection.set_cmap(cmap)
    collection.set_norm(norm)
    if vmin is not None or vmax is not None:
        collection.set_clim(vmin, vmax)
    else:
        collection.autoscale_None()
    ax.grid(False)

    minx = tri.x.min()
    maxx = tri.x.max()
    miny = tri.y.min()
    maxy = tri.y.max()
    corners = (minx, miny), (maxx, maxy)
    ax.update_datalim(corners)
    ax.autoscale_view()
    ax.add_collection(collection)
    return collection
Exemplo n.º 19
0
    def show_scalar_in_matplotlib_3d(self, field, **kwargs):
        import matplotlib.pyplot as plt

        # This import also registers the 3D projection.
        import mpl_toolkits.mplot3d.art3d as art3d

        do_show = kwargs.pop("do_show", True)
        vmin = kwargs.pop("vmin", None)
        vmax = kwargs.pop("vmax", None)
        norm = kwargs.pop("norm", None)

        nodes = self._vis_nodes_numpy()
        field = resample_to_numpy(self.connection, field)

        assert nodes.shape[0] == self.vis_discr.ambient_dim

        vis_connectivity, = self._vtk_connectivity.groups

        fig = plt.gcf()
        ax = fig.gca(projection="3d")

        had_data = ax.has_data()

        if self.vis_discr.dim == 2:
            nodes = list(nodes)
            # pad to 3D with zeros
            while len(nodes) < 3:
                nodes.append(0*nodes[0])

            from matplotlib.tri.triangulation import Triangulation
            tri, _, kwargs = \
                Triangulation.get_from_args_and_kwargs(
                        *nodes,
                        triangles=vis_connectivity.vis_connectivity.reshape(-1, 3))

            triangles = tri.get_masked_triangles()
            xt = nodes[0][triangles]
            yt = nodes[1][triangles]
            zt = nodes[2][triangles]
            verts = np.stack((xt, yt, zt), axis=-1)

            fieldt = field[triangles]

            polyc = art3d.Poly3DCollection(verts, **kwargs)

            # average over the three points of each triangle
            avg_field = fieldt.mean(axis=1)
            polyc.set_array(avg_field)

            if vmin is not None or vmax is not None:
                polyc.set_clim(vmin, vmax)
            if norm is not None:
                polyc.set_norm(norm)

            ax.add_collection(polyc)
            ax.auto_scale_xyz(xt, yt, zt, had_data)

        else:
            raise RuntimeError("meshes of bulk dimension %d are currently "
                    "unsupported" % self.vis_discr.dim)

        if do_show:
            plt.show()
Exemplo n.º 20
0
def tripcolor(ax,
              *args,
              alpha=1.0,
              norm=None,
              cmap=None,
              vmin=None,
              vmax=None,
              shading='flat',
              facecolors=None,
              **kwargs):
    """
    Create a pseudocolor plot of an unstructured triangular grid.

    Call signatures::

      tripcolor(triangulation, C, *, ...)
      tripcolor(x, y, C, *, [triangles=triangles], [mask=mask], ...)

    The triangular grid can be specified either by passing a `.Triangulation`
    object as the first parameter, or by passing the points *x*, *y* and
    optionally the *triangles* and a *mask*. See `.Triangulation` for an
    explanation of these parameters.

    If neither of *triangulation* or *triangles* are given, the triangulation
    is calculated on the fly. In this case, it does not make sense to provide
    colors at the triangle faces via *C* or *facecolors* because there are
    multiple possible triangulations for a group of points and you don't know
    which triangles will be constructed.

    Parameters
    ----------
    triangulation : `.Triangulation`
        An already created triangular grid.
    x, y, triangles, mask
        Parameters defining the triangular grid. See `.Triangulation`.
        This is mutually exclusive with specifying *triangulation*.
    C : array-like
        The color values, either for the points or for the triangles. Which one
        is automatically inferred from the length of *C*, i.e. does it match
        the number of points or the number of triangles. If there are the same
        number of points and triangles in the triangulation it is assumed that
        color values are defined at points; to force the use of color values at
        triangles use the keyword argument ``facecolors=C`` instead of just
        ``C``.
        This parameter is position-only.
    facecolors : array-like, optional
        Can be used alternatively to *C* to specify colors at the triangle
        faces. This parameter takes precedence over *C*.
    shading : {'flat', 'gouraud'}, default: 'flat'
        If  'flat' and the color values *C* are defined at points, the color
        values used for each triangle are from the mean C of the triangle's
        three points. If *shading* is 'gouraud' then color values must be
        defined at points.
    other_parameters
        All other parameters are the same as for `~.Axes.pcolor`.

    Notes
    -----
    It is possible to pass the triangles positionally, i.e.
    ``tripcolor(x, y, triangles, C, ...)``. However, this is discouraged.
    For more clarity, pass *triangles* via keyword argument.
    """
    _api.check_in_list(['flat', 'gouraud'], shading=shading)

    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)

    # Parse the color to be in one of (the other variable will be None):
    # - facecolors: if specified at the triangle faces
    # - point_colors: if specified at the points
    if facecolors is not None:
        if args:
            _api.warn_external(
                "Positional parameter C has no effect when the keyword "
                "facecolors is given")
        point_colors = None
        if len(facecolors) != len(tri.triangles):
            raise ValueError("The length of facecolors must match the number "
                             "of triangles")
    else:
        # Color from positional parameter C
        if not args:
            raise ValueError(
                "Missing color parameter. Please pass C positionally or "
                "facecolors via keyword")
        elif len(args) > 1:
            _api.warn_external(
                "Additional positional parameters {args[1:]!r} are ignored")
        C = np.asarray(args[0])
        if len(C) == len(tri.x):
            # having this before the len(tri.triangles) comparison gives
            # precedence to nodes if there are as many nodes as triangles
            point_colors = C
            facecolors = None
        elif len(C) == len(tri.triangles):
            point_colors = None
            facecolors = C
        else:
            raise ValueError('The length of C must match either the number '
                             'of points or the number of triangles')

    # Handling of linewidths, shading, edgecolors and antialiased as
    # in Axes.pcolor
    linewidths = (0.25, )
    if 'linewidth' in kwargs:
        kwargs['linewidths'] = kwargs.pop('linewidth')
    kwargs.setdefault('linewidths', linewidths)

    edgecolors = 'none'
    if 'edgecolor' in kwargs:
        kwargs['edgecolors'] = kwargs.pop('edgecolor')
    ec = kwargs.setdefault('edgecolors', edgecolors)

    if 'antialiased' in kwargs:
        kwargs['antialiaseds'] = kwargs.pop('antialiased')
    if 'antialiaseds' not in kwargs and ec.lower() == "none":
        kwargs['antialiaseds'] = False

    _api.check_isinstance((Normalize, None), norm=norm)
    if shading == 'gouraud':
        if facecolors is not None:
            raise ValueError(
                "shading='gouraud' can only be used when the colors "
                "are specified at the points, not at the faces.")
        collection = TriMesh(tri,
                             alpha=alpha,
                             array=point_colors,
                             cmap=cmap,
                             norm=norm,
                             **kwargs)
    else:
        # Vertices of triangles.
        maskedTris = tri.get_masked_triangles()
        verts = np.stack((tri.x[maskedTris], tri.y[maskedTris]), axis=-1)

        # Color values.
        if facecolors is None:
            # One color per triangle, the mean of the 3 vertex color values.
            colors = point_colors[maskedTris].mean(axis=1)
        elif tri.mask is not None:
            # Remove color values of masked triangles.
            colors = facecolors[~tri.mask]
        else:
            colors = facecolors
        collection = PolyCollection(verts,
                                    alpha=alpha,
                                    array=colors,
                                    cmap=cmap,
                                    norm=norm,
                                    **kwargs)

    collection._scale_norm(norm, vmin, vmax)
    ax.grid(False)

    minx = tri.x.min()
    maxx = tri.x.max()
    miny = tri.y.min()
    maxy = tri.y.max()
    corners = (minx, miny), (maxx, maxy)
    ax.update_datalim(corners)
    ax.autoscale_view()
    ax.add_collection(collection)
    return collection
Exemplo n.º 21
0
def tripcolor(ax, *args, **kwargs):
    """
    Create a pseudocolor plot of an unstructured triangular grid.

    The triangulation can be specified in one of two ways; either::

      tripcolor(triangulation, ...)

    where triangulation is a :class:`matplotlib.tri.Triangulation`
    object, or

    ::

      tripcolor(x, y, ...)
      tripcolor(x, y, triangles, ...)
      tripcolor(x, y, triangles=triangles, ...)
      tripcolor(x, y, mask=mask, ...)
      tripcolor(x, y, triangles, mask=mask, ...)

    in which case a Triangulation object will be created.  See
    :class:`~matplotlib.tri.Triangulation` for a explanation of these
    possibilities.

    The next argument must be *C*, the array of color values, either
    one per point in the triangulation if color values are defined at
    points, or one per triangle in the triangulation if color values
    are defined at triangles. If there are the same number of points
    and triangles in the triangulation it is assumed that color
    values are defined at points; to force the use of color values at
    triangles use the kwarg *facecolors*=C instead of just *C*.

    *shading* may be 'flat' (the default) or 'gouraud'. If *shading*
    is 'flat' and C values are defined at points, the color values
    used for each triangle are from the mean C of the triangle's
    three points. If *shading* is 'gouraud' then color values must be
    defined at points.

    The remaining kwargs are the same as for
    :meth:`~matplotlib.axes.Axes.pcolor`.

    **Example:**

        .. plot:: mpl_examples/pylab_examples/tripcolor_demo.py
    """
    if not ax._hold:
        ax.cla()

    alpha = kwargs.pop('alpha', 1.0)
    norm = kwargs.pop('norm', None)
    cmap = kwargs.pop('cmap', None)
    vmin = kwargs.pop('vmin', None)
    vmax = kwargs.pop('vmax', None)
    shading = kwargs.pop('shading', 'flat')
    facecolors = kwargs.pop('facecolors', None)

    if shading not in ['flat', 'gouraud']:
        raise ValueError("shading must be one of ['flat', 'gouraud'] "
                         "not {0}".format(shading))

    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)

    # C is the colors array defined at either points or faces (i.e. triangles).
    # If facecolors is None, C are defined at points.
    # If facecolors is not None, C are defined at faces.
    if facecolors is not None:
        C = facecolors
    else:
        C = np.asarray(args[0])

    # If there are a different number of points and triangles in the
    # triangulation, can omit facecolors kwarg as it is obvious from
    # length of C whether it refers to points or faces.
    # Do not do this for gouraud shading.
    if (facecolors is None and len(C) == len(tri.triangles) and
            len(C) != len(tri.x) and shading != 'gouraud'):
        facecolors = C

    # Check length of C is OK.
    if ((facecolors is None and len(C) != len(tri.x)) or
            (facecolors is not None and len(C) != len(tri.triangles))):
        raise ValueError('Length of color values array must be the same '
                         'as either the number of triangulation points '
                         'or triangles')

    # Handling of linewidths, shading, edgecolors and antialiased as
    # in Axes.pcolor
    linewidths = (0.25,)
    if 'linewidth' in kwargs:
        kwargs['linewidths'] = kwargs.pop('linewidth')
    kwargs.setdefault('linewidths', linewidths)

    edgecolors = 'none'
    if 'edgecolor' in kwargs:
        kwargs['edgecolors'] = kwargs.pop('edgecolor')
    ec = kwargs.setdefault('edgecolors', edgecolors)

    if 'antialiased' in kwargs:
        kwargs['antialiaseds'] = kwargs.pop('antialiased')
    if 'antialiaseds' not in kwargs and ec.lower() == "none":
        kwargs['antialiaseds'] = False

    if shading == 'gouraud':
        if facecolors is not None:
            raise ValueError('Gouraud shading does not support the use '
                             'of facecolors kwarg')
        if len(C) != len(tri.x):
            raise ValueError('For gouraud shading, the length of color '
                             'values array must be the same as the '
                             'number of triangulation points')
        collection = TriMesh(tri, **kwargs)
    else:
        # Vertices of triangles.
        maskedTris = tri.get_masked_triangles()
        verts = np.concatenate((tri.x[maskedTris][..., np.newaxis],
                                tri.y[maskedTris][..., np.newaxis]), axis=2)

        # Color values.
        if facecolors is None:
            # One color per triangle, the mean of the 3 vertex color values.
            C = C[maskedTris].mean(axis=1)
        elif tri.mask is not None:
            # Remove color values of masked triangles.
            C = C.compress(1-tri.mask)

        collection = PolyCollection(verts, **kwargs)

    collection.set_alpha(alpha)
    collection.set_array(C)
    if norm is not None:
        if not isinstance(norm, Normalize):
            msg = "'norm' must be an instance of 'Normalize'"
            raise ValueError(msg)
    collection.set_cmap(cmap)
    collection.set_norm(norm)
    if vmin is not None or vmax is not None:
        collection.set_clim(vmin, vmax)
    else:
        collection.autoscale_None()
    ax.grid(False)

    minx = tri.x.min()
    maxx = tri.x.max()
    miny = tri.y.min()
    maxy = tri.y.max()
    corners = (minx, miny), (maxx, maxy)
    ax.update_datalim(corners)
    ax.autoscale_view()
    ax.add_collection(collection)
    return collection
Exemplo n.º 22
0
def tripcolor(ax,
              *args,
              alpha=1.0,
              norm=None,
              cmap=None,
              vmin=None,
              vmax=None,
              shading='flat',
              facecolors=None,
              **kwargs):
    """
    Create a pseudocolor plot of an unstructured triangular grid.

    The triangulation can be specified in one of two ways; either::

      tripcolor(triangulation, ...)

    where triangulation is a `.Triangulation` object, or

    ::

      tripcolor(x, y, ...)
      tripcolor(x, y, triangles, ...)
      tripcolor(x, y, triangles=triangles, ...)
      tripcolor(x, y, mask=mask, ...)
      tripcolor(x, y, triangles, mask=mask, ...)

    in which case a Triangulation object will be created.  See `.Triangulation`
    for a explanation of these possibilities.

    The next argument must be *C*, the array of color values, either
    one per point in the triangulation if color values are defined at
    points, or one per triangle in the triangulation if color values
    are defined at triangles. If there are the same number of points
    and triangles in the triangulation it is assumed that color
    values are defined at points; to force the use of color values at
    triangles use the kwarg ``facecolors=C`` instead of just ``C``.

    *shading* may be 'flat' (the default) or 'gouraud'. If *shading*
    is 'flat' and C values are defined at points, the color values
    used for each triangle are from the mean C of the triangle's
    three points. If *shading* is 'gouraud' then color values must be
    defined at points.

    The remaining kwargs are the same as for `~.Axes.pcolor`.
    """
    _api.check_in_list(['flat', 'gouraud'], shading=shading)

    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)

    # C is the colors array defined at either points or faces (i.e. triangles).
    # If facecolors is None, C are defined at points.
    # If facecolors is not None, C are defined at faces.
    if facecolors is not None:
        C = facecolors
    else:
        C = np.asarray(args[0])

    # If there are a different number of points and triangles in the
    # triangulation, can omit facecolors kwarg as it is obvious from
    # length of C whether it refers to points or faces.
    # Do not do this for gouraud shading.
    if (facecolors is None and len(C) == len(tri.triangles)
            and len(C) != len(tri.x) and shading != 'gouraud'):
        facecolors = C

    # Check length of C is OK.
    if ((facecolors is None and len(C) != len(tri.x))
            or (facecolors is not None and len(C) != len(tri.triangles))):
        raise ValueError('Length of color values array must be the same '
                         'as either the number of triangulation points '
                         'or triangles')

    # Handling of linewidths, shading, edgecolors and antialiased as
    # in Axes.pcolor
    linewidths = (0.25, )
    if 'linewidth' in kwargs:
        kwargs['linewidths'] = kwargs.pop('linewidth')
    kwargs.setdefault('linewidths', linewidths)

    edgecolors = 'none'
    if 'edgecolor' in kwargs:
        kwargs['edgecolors'] = kwargs.pop('edgecolor')
    ec = kwargs.setdefault('edgecolors', edgecolors)

    if 'antialiased' in kwargs:
        kwargs['antialiaseds'] = kwargs.pop('antialiased')
    if 'antialiaseds' not in kwargs and ec.lower() == "none":
        kwargs['antialiaseds'] = False

    if shading == 'gouraud':
        if facecolors is not None:
            raise ValueError('Gouraud shading does not support the use '
                             'of facecolors kwarg')
        if len(C) != len(tri.x):
            raise ValueError('For gouraud shading, the length of color '
                             'values array must be the same as the '
                             'number of triangulation points')
        collection = TriMesh(tri, **kwargs)
    else:
        # Vertices of triangles.
        maskedTris = tri.get_masked_triangles()
        verts = np.stack((tri.x[maskedTris], tri.y[maskedTris]), axis=-1)

        # Color values.
        if facecolors is None:
            # One color per triangle, the mean of the 3 vertex color values.
            C = C[maskedTris].mean(axis=1)
        elif tri.mask is not None:
            # Remove color values of masked triangles.
            C = C[~tri.mask]

        collection = PolyCollection(verts, **kwargs)

    collection.set_alpha(alpha)
    collection.set_array(C)
    _api.check_isinstance((Normalize, None), norm=norm)
    collection.set_cmap(cmap)
    collection.set_norm(norm)
    collection._scale_norm(norm, vmin, vmax)
    ax.grid(False)

    minx = tri.x.min()
    maxx = tri.x.max()
    miny = tri.y.min()
    maxy = tri.y.max()
    corners = (minx, miny), (maxx, maxy)
    ax.update_datalim(corners)
    ax.autoscale_view()
    ax.add_collection(collection)
    return collection
Exemplo n.º 23
0
def triplot(ax, *args, **kwargs):
    """
    Draw a unstructured triangular grid as lines and/or markers.

    The triangulation to plot can be specified in one of two ways;
    either::

      triplot(triangulation, ...)

    where triangulation is a :class:`matplotlib.tri.Triangulation`
    object, or

    ::

      triplot(x, y, ...)
      triplot(x, y, triangles, ...)
      triplot(x, y, triangles=triangles, ...)
      triplot(x, y, mask=mask, ...)
      triplot(x, y, triangles, mask=mask, ...)

    in which case a Triangulation object will be created.  See
    :class:`~matplotlib.tri.Triangulation` for a explanation of these
    possibilities.

    The remaining args and kwargs are the same as for
    :meth:`~matplotlib.axes.Axes.plot`.

    Return a list of 2 :class:`~matplotlib.lines.Line2D` containing
    respectively:

        - the lines plotted for triangles edges
        - the markers plotted for triangles nodes
    """
    import matplotlib.axes

    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)
    x, y, edges = (tri.x, tri.y, tri.edges)

    # Decode plot format string, e.g., 'ro-'
    fmt = ""
    if len(args) > 0:
        fmt = args[0]
    linestyle, marker, color = matplotlib.axes._base._process_plot_format(fmt)

    # Insert plot format string into a copy of kwargs (kwargs values prevail).
    kw = kwargs.copy()
    for key, val in zip(('linestyle', 'marker', 'color'),
                        (linestyle, marker, color)):
        if val is not None:
            kw[key] = kwargs.get(key, val)

    # Draw lines without markers.
    # Note 1: If we drew markers here, most markers would be drawn more than
    #         once as they belong to several edges.
    # Note 2: We insert nan values in the flattened edges arrays rather than
    #         plotting directly (triang.x[edges].T, triang.y[edges].T)
    #         as it considerably speeds-up code execution.
    linestyle = kw['linestyle']
    kw_lines = kw.copy()
    kw_lines['marker'] = 'None'  # No marker to draw.
    kw_lines['zorder'] = kw.get('zorder', 1)  # Path default zorder is used.
    if (linestyle is not None) and (linestyle not in ['None', '', ' ']):
        tri_lines_x = np.insert(x[edges], 2, np.nan, axis=1)
        tri_lines_y = np.insert(y[edges], 2, np.nan, axis=1)
        tri_lines = ax.plot(tri_lines_x.ravel(), tri_lines_y.ravel(),
                            **kw_lines)
    else:
        tri_lines = ax.plot([], [], **kw_lines)

    # Draw markers separately.
    marker = kw['marker']
    kw_markers = kw.copy()
    kw_markers['linestyle'] = 'None'  # No line to draw.
    if (marker is not None) and (marker not in ['None', '', ' ']):
        tri_markers = ax.plot(x, y, **kw_markers)
    else:
        tri_markers = ax.plot([], [], **kw_markers)

    return tri_lines + tri_markers
Exemplo n.º 24
0
def triplot(ax, *args, **kwargs):
    """
    Draw an unstructured triangular grid as lines and/or markers.

    Call signatures::

      triplot(triangulation, ...)
      triplot(x, y, [triangles], *, [mask=mask], ...)

    The triangular grid can be specified either by passing a `.Triangulation`
    object as the first parameter, or by passing the points *x*, *y* and
    optionally the *triangles* and a *mask*. If neither of *triangulation* or
    *triangles* are given, the triangulation is calculated on the fly.

    Parameters
    ----------
    triangulation : `.Triangulation`
        An already created triangular grid.
    x, y, triangles, mask
        Parameters defining the triangular grid. See `.Triangulation`.
        This is mutually exclusive with specifying *triangulation*.
    other_parameters
        All other args and kwargs are forwarded to `~.Axes.plot`.

    Returns
    -------
    lines : `~matplotlib.lines.Line2D`
        The drawn triangles edges.
    markers : `~matplotlib.lines.Line2D`
        The drawn marker nodes.
    """
    import matplotlib.axes

    tri, args, kwargs = Triangulation.get_from_args_and_kwargs(*args, **kwargs)
    x, y, edges = (tri.x, tri.y, tri.edges)

    # Decode plot format string, e.g., 'ro-'
    fmt = args[0] if args else ""
    linestyle, marker, color = matplotlib.axes._base._process_plot_format(fmt)

    # Insert plot format string into a copy of kwargs (kwargs values prevail).
    kw = cbook.normalize_kwargs(kwargs, mlines.Line2D)
    for key, val in zip(('linestyle', 'marker', 'color'),
                        (linestyle, marker, color)):
        if val is not None:
            kw.setdefault(key, val)

    # Draw lines without markers.
    # Note 1: If we drew markers here, most markers would be drawn more than
    #         once as they belong to several edges.
    # Note 2: We insert nan values in the flattened edges arrays rather than
    #         plotting directly (triang.x[edges].T, triang.y[edges].T)
    #         as it considerably speeds-up code execution.
    linestyle = kw['linestyle']
    kw_lines = {
        **kw,
        'marker': 'None',  # No marker to draw.
        'zorder': kw.get('zorder', 1),  # Path default zorder is used.
    }
    if linestyle not in [None, 'None', '', ' ']:
        tri_lines_x = np.insert(x[edges], 2, np.nan, axis=1)
        tri_lines_y = np.insert(y[edges], 2, np.nan, axis=1)
        tri_lines = ax.plot(tri_lines_x.ravel(), tri_lines_y.ravel(),
                            **kw_lines)
    else:
        tri_lines = ax.plot([], [], **kw_lines)

    # Draw markers separately.
    marker = kw['marker']
    kw_markers = {
        **kw,
        'linestyle': 'None',  # No line to draw.
    }
    if marker not in [None, 'None', '', ' ']:
        tri_markers = ax.plot(x, y, **kw_markers)
    else:
        tri_markers = ax.plot([], [], **kw_markers)

    return tri_lines + tri_markers