Exemplo n.º 1
0
def style_figure(fig: matplotlib.figure.Figure, title: str, bottom: float = 0.2) -> None:
    """Stylize the supplied matplotlib Figure instance."""
    fig.tight_layout()
    if bottom is not None:
        fig.subplots_adjust(bottom=bottom)
    fig.suptitle(title)
    fig.legend(ncol=10, handlelength=0.75, handletextpad=0.25, columnspacing=0.5, loc='lower left')
Exemplo n.º 2
0
def multi_nyquist_title(fig: matplotlib.figure.Figure, params: paramsTup,
                        settings) -> matplotlib.figure.Figure:

    # plt.figure(fig)  # make sure fig is focus
    (filename_strip, solv, elec, ref_elec, work_elec, voltage) = params
    elec = "TBFTFB"
    fig.suptitle(
        f"Nyquist plots of {work_elec} in {elec} ({solv}) vs {ref_elec} reference",
        y=0.98)
    # xmin, xmax = plt.xlim()     # pylint: disable=W0612
    # expt_vars = f"WE = {work_elec} \nRE = {ref_elec} \nElectrolyte = {elec} \nSolvent = {solv}"
    # fig.text(xmax * 1.1, 0, expt_vars, fontdict=settings, withdash=False)
    return fig
Exemplo n.º 3
0
def add_metric_description_title(df_plot: pd.DataFrame,
                                 fig: mpl.figure.Figure,
                                 y: float = 1.0):
    """Adds a suptitle to the figure, describing the metric used."""
    assert df_plot.Metric.nunique() == 1, "More than one metric in DataFrame."
    binning_scheme = utils.assert_and_get_constant(df_plot.binning_scheme)
    num_bins = utils.assert_and_get_constant(df_plot.num_bins)
    norm = utils.assert_and_get_constant(df_plot.norm)
    title = (f"ECE variant: {binning_scheme} binning, "
             f"{num_bins:.0f} bins, "
             f"{norm} norm")
    display_names = {
        "adaptive": "equal-mass",
        "even": "equal-width",
        "l1": "L1",
        "l2": "L2",
    }
    for old, new in display_names.items():
        title = title.replace(old, new)

    fig.suptitle(title, y=y, verticalalignment="bottom")
Exemplo n.º 4
0
def plot_avg_decay_data(t_sol: Union[np.ndarray, List[np.array]],
                        list_sim_data: List[np.array],
                        list_exp_data: List[np.array] = None,
                        state_labels: List[str] = None,
                        concentration: Conc = None,
                        atol: float = A_TOL,
                        colors: Union[str, Tuple[ColorMap, ColorMap]] = 'rk',
                        fig: mpl.figure.Figure = None,
                        title: str = '') -> None:
    ''' Plot the list of simulated and experimental data (optional) against time in t_sol.
        If concentration is given, the legend will show the concentrations.
        colors is a string with two chars. The first is the sim color,
        the second the exp data color.
    '''
    num_plots = len(list_sim_data)
    num_rows = 3
    num_cols = int(np.ceil(num_plots / 3))

    # optional lists default to list of None
    list_exp_data = list_exp_data or [None] * num_plots
    state_labels = state_labels or [''] * num_plots

    list_t_sim = t_sol if len(
        t_sol) == num_plots else [t_sol] * num_plots  # type: List[np.array]

    if concentration:
        conc_str = '_' + str(concentration.S_conc) + 'S_' + str(
            concentration.A_conc) + 'A'


#        state_labels = [label+conc_str for label in state_labels]
    else:
        conc_str = ''

    sim_color = colors[0]
    exp_color = colors[1]
    exp_size = 2  # marker size
    exp_marker = '.'

    if fig is None:
        fig = plt.figure()

    fig.suptitle(title + '. Time in ms.')

    list_axes = fig.get_axes()  # type: List
    if not list_axes:
        for num in range(num_plots):
            fig.add_subplot(num_rows, num_cols, num + 1)
        list_axes = fig.get_axes()

    for sim_data, t_sim, exp_data, state_label, axes\
        in zip(list_sim_data, list_t_sim, list_exp_data, state_labels, list_axes):

        if state_label:
            axes.set_title(
                state_label.replace('_', ' '), {
                    'horizontalalignment': 'center',
                    'verticalalignment': 'center',
                    'fontweight': 'bold',
                    'fontsize': 10
                })

        if sim_data is None or np.isnan(sim_data).any() or not np.any(
                sim_data > 0):
            continue

        # no exp data: either a GS or simply no exp data available
        if exp_data is 0 or exp_data is None:
            # nonposy='clip': clip non positive values to a very small positive number
            axes.semilogy(t_sim * 1000,
                          sim_data,
                          color=sim_color,
                          label=state_label + conc_str)

            axes.axis('tight')
            axes.set_xlim(left=t_sim[0] * 1000.0)
            # add some white space above and below
            margin_factor = np.array([0.7, 1.3])
            axes.set_ylim(*np.array(axes.get_ylim()) * margin_factor)
            if axes.set_ylim()[0] < atol:
                axes.set_ylim(bottom=atol)  # don't show noise below atol
                # detect when the simulation goes above and below atol
                above = sim_data > atol
                change_indices = np.where(np.roll(above, 1) != above)[0]
                # make sure change_indices[-1] happens when the population is going BELOW atol
                if change_indices.size > 1 and sim_data[
                        change_indices[-1]] < atol:  # pragma: no cover
                    # last time it changes
                    max_index = change_indices[-1]
                    # show simData until it falls below atol
                    axes.set_xlim(right=t_sim[max_index] * 1000)
            min_y = min(*axes.get_ylim())
            max_y = max(*axes.get_ylim())
            axes.set_ylim(bottom=min_y, top=max_y)
        else:  # exp data available
            sim_handle, = axes.semilogy(t_sim * 1000,
                                        sim_data,
                                        color=sim_color,
                                        label=state_label + conc_str,
                                        zorder=10)
            # convert exp_data time to ms
            exp_handle, = axes.semilogy(exp_data[:, 0] * 1000,
                                        exp_data[:, 1] * np.max(sim_data),
                                        color=exp_color,
                                        marker=exp_marker,
                                        linewidth=0,
                                        markersize=exp_size,
                                        zorder=1)
            axes.axis('tight')
            axes.set_ylim(top=axes.get_ylim()[1] *
                          1.2)  # add some white space on top
            tmin = min(exp_data[-1, 0], t_sim[0])
            axes.set_xlim(left=tmin * 1000.0, right=exp_data[-1, 0] *
                          1000)  # don't show beyond expData

    if conc_str:
        list_axes[0].legend(loc="best", fontsize='small')
        curr_handles, curr_labels = list_axes[0].get_legend_handles_labels()
        new_labels = [
            label.replace(state_labels[0] + '_', '').replace('_', ', ')
            for label in curr_labels
        ]
        list_axes[0].legend(curr_handles,
                            new_labels,
                            markerscale=5,
                            loc="best",
                            fontsize='small')

    fig.subplots_adjust(top=0.918,
                        bottom=0.041,
                        left=0.034,
                        right=0.99,
                        hspace=0.275,
                        wspace=0.12)