Exemplo n.º 1
0
def read_training_data(fname, D=None):
    """Given a file in appropriate format, and given a set D of features,
    returns the pair (A, b) consisting of
    a P-by-D matrix A and a P-vector b,
    where P is a set of patient identification integers (IDs).

    For each patient ID p,
      - row p of A is the D-vector describing patient p's tissue sample,
      - entry p of b is +1 if patient p's tissue is malignant, and -1 if it is benign.

    The set D of features must be a subset of the features in the data (see text).
    """
    file = open(fname)
    params = [
        "radius", "texture", "perimeter", "area", "smoothness", "compactness",
        "concavity", "concave points", "symmetry", "fractal dimension"
    ]
    stats = ["(mean)", "(stderr)", "(worst)"]
    feature_labels = set([y + x for x in stats for y in params])
    feature_map = {
        params[i] + stats[j]: j * len(params) + i
        for i in range(len(params)) for j in range(len(stats))
    }
    if D is None: D = feature_labels
    feature_vectors = {}
    patient_diagnoses = {}
    for line in file:
        row = line.split(",")
        patient_ID = int(row[0])
        patient_diagnoses[patient_ID] = -1 if row[1] == 'B' else +1
        feature_vectors[patient_ID] = Vec(
            D, {f: float(row[feature_map[f] + 2])
                for f in D})
    return rowdict2mat(feature_vectors), Vec(set(patient_diagnoses.keys()),
                                             patient_diagnoses)
Exemplo n.º 2
0
def determine_consumption():
  D = {'radio', 'sensor', 'memory', 'CPU'}
  v0 = Vec(D, {'radio': .1, 'CPU':.3})
  v1 = Vec(D, {'sensor': .2, 'CPU':.4})
  v2 = Vec(D, {'memory': .3, 'CPU':.1})
  v3 = Vec(D, {'memory': .5, 'CPU':.4})
  v4 = Vec(D, {'radio': .2, 'CPU':.5})

  b = Vec({0, 1, 2, 3, 4}, {0: 140.0, 1: 170.0, 2: 60.0, 3: 170.0, 4:250.0})
  A = matutil.rowdict2mat([v0, v1, v2, v3, v4])
  rate = solver.solve(A, b)
Exemplo n.º 3
0
def projection_matrix(v):
    # 1/||v|| * (v * v^T)
    v_trans = matutil.rowdict2mat({0: v})
    unit_length_projection = v * v_trans
    length_squared_inverse = 1 / (v * v)
    return length_squared_inverse * unit_length_projection


# problem 8.3.16
# The rank of matrix M such that project_v(x) = M*x should be 1,
# because it is a linear combination of a rank 1 matrix another.
def make_matrix(feature_vectors, diagnoses, features):
    ids = {i for i in feature_vectors}
    D = ids | features | {'gamma'}
    constraints = {
        d: Vec(D, main_constraint(d, feature_vectors[d], diagnoses[d],
                                  features))
        for d in feature_vectors
    }
    constraints.update(
        {-d: Vec(D, nonneg_constraint(d))
         for d in feature_vectors})
    return matutil.rowdict2mat(constraints)
import cancer_data
import vec
from vector import vecutil
from matrix import matutil
import math

test_ident = matutil.rowdict2mat({
    0: vecutil.list2vec([1, 0, 0]),
    1: vecutil.list2vec([0, 1, 0]),
    2: vecutil.list2vec([0, 0, 1]),
})
test_1 = vecutil.list2vec([-1, -1, -1])
test_2 = vecutil.list2vec([1, 1, 1])


def read_training_data():
    return cancer_data.read_training_data('inner_product/train.data')


def signum(u):
    """
  input: a Vec u
  output: the Vec v with the same domain as u such that
          +1 if u[d] >= 0
  v[d]= {
          -1 if u[d] < 0
  """
    return vec.Vec(u.D, {d: 1 if u[d] >= 0 else -1 for d in u.D})


assert (signum(vec.Vec({'A', 'B'}, {
Exemplo n.º 6
0
    ('y2', 'x1'): -x1,
    ('y2', 'x2'): -x2,
    ('y2', 'x3'): -1
  })
  return [u, v]

w = Vec(D, {
  ('y1', 'x1'): 1
})

l0, l1 = make_equations(358, 36, 0, 0)
l4, l5 = make_equations(329, 597, 0, 1)
l2, l3 = make_equations(592, 157, 0, 1)
l6, l7 = make_equations(580, 483, 0, 1)

L = matutil.rowdict2mat({
  0: l0,
  1: l1,
  2: l2,
  3: l3,
  4: l4,
  5: l5,
  6: l6,
  7: l7,
  8: w,    
})

b = vecutil.list2vec([0, 0, 0, 0, 0, 0, 0, 0, 1])

print(solver.solve(L, b))
Exemplo n.º 7
0
def print_rowlist(rowlist):
    as_mat = matutil.rowdict2mat(rowlist)
    print("%s" % as_mat)
Exemplo n.º 8
0
    return (1 / len(images)) * final


faces = import_faces('singular_value_decomposition/faces')
centroid = compute_image_centroid(faces)
# image.image2display(vector2image(centroid))

centered_image_vectors = {k: faces[k] - centroid for k in faces}


def norm(v):
    return math.sqrt(v * v)


A = matutil.rowdict2mat(centered_image_vectors)

U, Sigma, V = svd.factor(A)
Vt = V.transpose()
tenset = {i for i in range(10)}
Uten = matutil.submatrix(U, tenset, tenset)
Sigmaten = matutil.submatrix(Sigma, tenset, tenset)
Vten = matutil.submatrix(Vt, {i for i in range(10)}, Vt.D[1])

eigenfaces_basis = Uten * Sigmaten * Vten


def projected_representation(M, x):
    """
  input: a matrix M with orthonormal rows and a vector x with D from Col M
  output: the coordinate representation of the parallel of projection of x onto Row M
Exemplo n.º 9
0
  candidates = generate_candidates()
  all_vectors = [a0, b0] + candidates

  while not choose_three_independent(all_vectors):
    candidates = generate_candidates()

  return candidates

coded = "memelover"
codedbits = bitutil.str2bits(coded)

U = matutil.coldict2mat({
  column: choose_secret_vector(codedbits[column][0], codedbits[column][1]) for column in codedbits.D[1]
})

remaining = generate_remaining_vectors()

A = matutil.rowdict2mat({
  0: a0,
  1: b0,
  2: remaining[0],
  3: remaining[1],
  4: remaining[2],
  5: remaining[3],
  6: remaining[4],
  7: remaining[5],
})

shares = A * U