Exemplo n.º 1
0
 def __call__(self, x, y):
     x, y = x.get(), y.get()
     if x is y:
         return B.fill_diag(B.one(x), B.shape(uprank(x))[0])
     else:
         x, y = uprank(x), uprank(y)
         return Zero(B.dtype(x), B.shape(x)[0], B.shape(y)[0])
Exemplo n.º 2
0
 def __call__(self, x, y):
     w_x, w_y = x.w, y.w
     x, y = x.get(), y.get()
     if x is y:
         return Diagonal(1 / w_x)
     else:
         return Zero(B.dtype(x), num_elements(x), num_elements(y))
Exemplo n.º 3
0
 def __call__(self, x, y):
     w_x, w_y = x.w, y.w
     x, y = x.get(), y.get()
     if x is y:
         return Diagonal(1 / w_x)
     else:
         x, y = uprank(x), uprank(y)
         return Zero(B.dtype(x), B.shape(x)[0], B.shape(y)[0])
Exemplo n.º 4
0
def _noise_as_matrix(noise: type(None), dtype: B.DType, n: int):
    """Efficiently represent noise as a matrix.

    Args:
        noise (None, scalar, vector, or matrix): Noise. `None` means no noise.
        dtype (dtype): Data type that the noise should be.
        n (int): Number of observations.

    Returns:
        matrix: Noise as a matrix.
    """
    return Zero(dtype, n, n)
Exemplo n.º 5
0
def test_normal_mean_is_zero():
    # Check zero case.
    dist = Normal(B.eye(3))
    assert dist.mean_is_zero
    approx(dist.mean, B.zeros(3, 1))

    # Check another zero case.
    dist = Normal(Zero(np.float32, 3, 1), B.eye(3))
    assert dist.mean_is_zero
    approx(dist.mean, B.zeros(3, 1))

    # Check nonzero case.
    assert not Normal(B.randn(3, 1), B.eye(3)).mean_is_zero
Exemplo n.º 6
0
def test_zero_attributes():
    zero = Zero(int, 3, 4)
    assert zero.dtype == int
    assert zero.rows == 3
    assert zero.cols == 4
Exemplo n.º 7
0
def test_zero_formatting():
    assert str(Zero(int, 3, 3)) == "<zero matrix: shape=3x3, dtype=int>"
    assert repr(Zero(int, 3, 3)) == "<zero matrix: shape=3x3, dtype=int>"
Exemplo n.º 8
0
def generate(code):
    """Generate a random tensor of a particular type, specified with a code.

    Args:
        code (str): Code of the matrix.

    Returns:
        tensor: Random tensor.
    """
    mat_code, shape_code = code.split(":")

    # Parse shape.
    if shape_code == "":
        shape = ()
    else:
        shape = tuple(int(d) for d in shape_code.split(","))

    if mat_code == "randn":
        return B.randn(*shape)
    elif mat_code == "randn_pd":
        mat = B.randn(*shape)

        # If it is a scalar or vector, just pointwise square it.
        if len(shape) in {0, 1}:
            return mat**2 + 1
        else:
            return B.matmul(mat, mat, tr_b=True) + B.eye(shape[0])

    elif mat_code == "zero":
        return Zero(B.default_dtype, *shape)

    elif mat_code == "const":
        return Constant(B.randn(), *shape)
    elif mat_code == "const_pd":
        return Constant(B.randn()**2 + 1, *shape)

    elif mat_code == "lt":
        mat = B.vec_to_tril(B.randn(int(0.5 * shape[0] * (shape[0] + 1))))
        return LowerTriangular(mat)
    elif mat_code == "lt_pd":
        mat = generate(f"randn_pd:{shape[0]},{shape[0]}")
        return LowerTriangular(B.cholesky(B.reg(mat)))

    elif mat_code == "ut":
        mat = B.vec_to_tril(B.randn(int(0.5 * shape[0] * (shape[0] + 1))))
        return UpperTriangular(B.transpose(mat))
    elif mat_code == "ut_pd":
        mat = generate(f"randn_pd:{shape[0]},{shape[0]}")
        return UpperTriangular(B.transpose(B.cholesky(B.reg(mat))))

    elif mat_code == "dense":
        return Dense(generate(f"randn:{shape_code}"))
    elif mat_code == "dense_pd":
        return Dense(generate(f"randn_pd:{shape_code}"))

    elif mat_code == "diag":
        return Diagonal(generate(f"randn:{shape_code}"))
    elif mat_code == "diag_pd":
        return Diagonal(generate(f"randn_pd:{shape_code}"))

    else:
        raise RuntimeError(f'Cannot parse generation code "{code}".')
Exemplo n.º 9
0
 def elwise(self, x, y):
     if x is y and B.shape(B.uprank(x))[0] == B.shape(self.noises)[0]:
         return B.uprank(self.noises)
     else:
         x = B.uprank(x)
         return Zero(B.dtype(x), B.shape(x)[0], 1)
Exemplo n.º 10
0
 def __call__(self, x, y):
     if x is y and B.shape(uprank(x))[0] == B.shape(self.noises)[0]:
         return Diagonal(self.noises)
     else:
         x, y = uprank(x), uprank(y)
         return Zero(B.dtype(x), B.shape(x)[0], B.shape(y)[0])
Exemplo n.º 11
0
 def __call__(self, x, y):
     return Zero(B.dtype(x), B.shape(x)[0], B.shape(y)[0])
Exemplo n.º 12
0
 def elwise(self, x, y):
     if x is y and num_elements(x) == B.shape(self.noises)[0]:
         return uprank(self.noises)
     else:
         return Zero(B.dtype(x), num_elements(x), 1)
Exemplo n.º 13
0
 def __call__(self, x, y):
     if x is y and num_elements(x) == B.shape(self.noises)[0]:
         return Diagonal(self.noises)
     else:
         return Zero(B.dtype(x), num_elements(x), num_elements(y))
Exemplo n.º 14
0
 def __call__(self, x, y):
     y = y.get()
     return Zero(B.dtype(x), num_elements(x), num_elements(y))
Exemplo n.º 15
0
def test_isabstract_zero():
    check_isabstract(lambda: Zero(np.float64, 2, 2))
Exemplo n.º 16
0
 def __call__(self, x, y):
     x, y = uprank(x), uprank(y.get())
     return Zero(B.dtype(x), B.shape(x)[0], B.shape(y)[0])
Exemplo n.º 17
0
 def __call__(self, x, y):
     x, y = x.get(), y.get()
     if x is y:
         return B.fill_diag(B.one(x), num_elements(x))
     else:
         return Zero(B.dtype(x), num_elements(x), num_elements(y))