Exemplo n.º 1
0
        if i == 26:
            break
        if k == 'conv1_1_W':  
            sess.run(en_parameters[i].assign(np.concatenate([weights[k],np.zeros([3,3,1,64])],axis = 2)))
        else:
            sess.run(en_parameters[i].assign(weights[k]))
    print('finish loading vgg16 model')
    #load train data
    while epoch_num < max_epochs:
        print('epoch %d' % epoch_num)   
        while batch_num < batchs_per_epoch:
            print('batch %d, loading batch data...' % batch_num)
            batch_index = sess.run(index_dequeue_op)
            batch_RGB_paths = paths_RGB[batch_index]
            batch_alpha_paths = paths_alpha[batch_index]
            batch_FG_paths = paths_FG[batch_index]
            batch_BG_paths = paths_BG[batch_index]
            print('finish loading path')
            batch_RGBs,batch_trimaps,batch_alphas,batch_FGs,batch_BGs = load_data(sess,batch_RGB_paths,batch_alpha_paths,batch_FG_paths,batch_BG_paths)
            
            # feed = {image_batch:batch_RGBs.eval(), GT_matte_batch:batch_alphas.eval(),GT_trimap:batch_trimaps, GTBG_batch:batch_BGs.eval(), GTFG_batch:batch_FGs.eval(),is_train:True}
            feed = {image_batch:batch_RGBs, GT_matte_batch:batch_alphas,GT_trimap:batch_trimaps, GTBG_batch:batch_BGs, GTFG_batch:batch_FGs,is_train:True}
            _,loss,summary_str,step,p_mattes = sess.run([train_op,total_loss,summary_op,global_step,pred_mattes],feed_dict = feed)
            misc.imsave('./predict/alpha.jpg',p_mattes[0,:,:,0])
            summary_writer.add_summary(summary_str,global_step = step)
            print('loss is %f' %loss)
            batch_num += 1
        epoch_num += 1


Exemplo n.º 2
0
                else:
                    sess.run(en_parameters[i].assign(weights[k]))
        print('finish loading vgg16 model')
    else:
        print('Restoring pretrained model...')
        saver.restore(sess, tf.train.latest_checkpoint('./model'))
    sess.graph.finalize()

    while epoch_num < max_epochs:
        while batch_num < batchs_per_epoch:
            batch_index = sess.run(index_dequeue_op)

            batch_alpha_paths = paths_alpha[batch_index]
            batch_eps_paths = paths_eps[batch_index]
            batch_BG_paths = paths_BG[batch_index]
            batch_RGBs, batch_trimaps, batch_alphas, batch_BGs, batch_FGs, RGBs_with_mean = load_data(
                batch_alpha_paths, batch_eps_paths, batch_BG_paths)

            feed = {
                image_batch: batch_RGBs,
                GT_matte_batch: batch_alphas,
                GT_trimap: batch_trimaps,
                GTBG_batch: batch_BGs,
                GTFG_batch: batch_FGs,
                raw_RGBs: RGBs_with_mean,
                training: True
            }

            _, loss, summary_str, step = sess.run(
                [train_op, total_loss, summary_op, global_step],
                feed_dict=feed)
            print('epoch %d   batch %d   loss is %f' %
Exemplo n.º 3
0
    nummm = [
        1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
    ]
    fff = -1
    while epoch_num < max_epochs:
        while batch_num < batchs_per_epoch:
            fff = fff + 1
            batch_index = sess.run(index_dequeue_op)

            batch_alpha_paths = paths_alpha[batch_index]
            batch_eps_paths = paths_eps[batch_index]
            batch_BG_paths = paths_BG[batch_index]
            batch_dir_paths = paths_dir[batch_index]
            #            batch_RGBs,batch_trimaps,batch_alphas,batch_BGs,batch_FGs,RGBs_with_mean = load_data(batch_alpha_paths,batch_eps_paths,batch_BG_paths)
            batch_Gradients, batch_masks, batch_alphas = load_data(
                batch_alpha_paths, batch_eps_paths, batch_dir_paths)

            #            feed = {image_batch:batch_RGBs, GT_matte_batch:batch_alphas,GT_trimap:batch_trimaps, GTBG_batch:batch_BGs, GTFG_batch:batch_FGs,raw_RGBs:RGBs_with_mean,training:True}
            feed = {
                image_batch: batch_Gradients,
                GT_matte_batch: batch_alphas,
                GT_mask: batch_masks,
                training: True
            }

            _, loss, summary_str, step = sess.run(
                [train_op, total_loss, summary_op, global_step],
                feed_dict=feed)
            #            trimap=b_trimap.eval(feed_dict=feed)
            mask_ = b_mask.eval(feed_dict=feed)
            alpha_ = pred_final.eval(feed_dict=feed)